ﻻ يوجد ملخص باللغة العربية
We present simulations of the non-linear evolution of streaming instabilities in protoplanetary disks. The two components of the disk, gas treated with grid hydrodynamics and solids treated as superparticles, are mutually coupled by drag forces. We find that the initially laminar equilibrium flow spontaneously develops into turbulence in our unstratified local model. Marginally coupled solids (that couple to the gas on a Keplerian time-scale) trigger an upward cascade to large particle clumps with peak overdensities above 100. The clumps evolve dynamically by losing material downstream to the radial drift flow while receiving recycled material from upstream. Smaller, more tightly coupled solids produce weaker turbulence with more transient overdensities on smaller length scales. The net inward radial drift is decreased for marginally coupled particles, whereas the tightly coupled particles migrate faster in the saturated turbulent state. The turbulent diffusion of solid particles, measured by their random walk, depends strongly on their stopping time and on the solids-to-gas ratio of the background state, but diffusion is generally modest, particularly for tightly coupled solids. Angular momentum transport is too weak and of the wrong sign to influence stellar accretion. Self-gravity and collisions will be needed to determine the relevance of particle overdensities for planetesimal formation.
We present local simulations that verify the linear streaming instability that arises from aerodynamic coupling between solids and gas in protoplanetary disks. This robust instability creates enhancements in the particle density in order to tap the f
The Streaming Instability (SI) is a mechanism to concentrate solids in protoplanetary disks. Nonlinear particle clumping from the SI can trigger gravitational collapse into planetesimals. To better understand the numerical robustness of the SI, we pe
The formation of the first planetesimals and the final growth of planetary cores relies on the abundance of small pebbles. The efficiencies of both the streaming instability (SI) process, suggested to catalyze the early growth of planetesimals, and t
Recent years have seen growing interest in the streaming instability as a candidate mechanism to produce planetesimals. However, these investigations have been limited to small-scale simulations. We now present the results of a global protoplanetary
In continuation of previous work, numerical results are presented, concerning relativistically counter-streaming plasmas. Here, the relativistic mixed mode instability evolves through, and beyond, the linear saturation -- well into the nonlinear regi