ﻻ يوجد ملخص باللغة العربية
The Streaming Instability (SI) is a mechanism to concentrate solids in protoplanetary disks. Nonlinear particle clumping from the SI can trigger gravitational collapse into planetesimals. To better understand the numerical robustness of the SI, we perform a suite of vertically-stratified 3D simulations with fixed physical parameters known to produce strong clumping. We vary the numerical implementation, namely the computational domain size and the vertical boundary conditions (vBCs), comparing newly-implemented outflow vBCs to the previously-used periodic and reflecting vBCs. We find strong particle clumping by the SI is mostly independent of the vBCs. However, peak particle densities are higher in larger simulation domains due to a larger particle mass reservoir. We report SI-triggered zonal flows, i.e., azimuthally-banded radial variations of gas pressure. These structures have low amplitudes, insufficient to halt particle radial drift, confirming that particle trapping in gas pressure maxima is not the mechanism of the SI. We find that outflow vBCs produce artificially large gas outflow rates at vertical boundaries. However, the outflow vBCs reduce artificial reflections at vertical boundaries, allowing more particle sedimentation, and showing less temporal variation and better convergence with box size. The radial spacing of dense particle filaments is $sim0.15$ gas scale heights ($H$) for all vBCs, which sets the feeding zone for planetesimal growth in self-gravitating simulations. Our results validate the use of the outflow vBCs in SI simulations, even with vertical boundaries close ($leq 0.4H$) to the disk midplane. Overall, our study demonstrates the numerical robustness of nonlinear particle clumping by the SI.
The streaming instability is a leading candidate mechanism to explain the formation of planetesimals. Yet, the role of this instability in the driving of turbulence in protoplanetary disks, given its fundamental nature as a linear hydrodynamical inst
The streaming instability is a popular candidate for planetesimal formation by concentrating dust particles to trigger gravitational collapse. However, its robustness against physical conditions expected in protoplanetary disks is unclear. In particu
In the recent years, sub/mm observations of protoplanetary disks have discovered an incredible diversity of substructures in the dust emission. An important result was the finding that dust grains of mm size are embedded in very thin dusty disks. Thi
We present simulations of the non-linear evolution of streaming instabilities in protoplanetary disks. The two components of the disk, gas treated with grid hydrodynamics and solids treated as superparticles, are mutually coupled by drag forces. We f
The vertical shear instability (VSI) is a robust phenomenon in irradiated protoplanetary disks (PPDs). While there is extensive literature on the VSI in the hydrodynamic limit, PPDs are expected to be magnetized and their extremely low ionization fra