ﻻ يوجد ملخص باللغة العربية
We present results from new deep HST/ACS photometry of I Zw 18, the most metal-poor blue compact dwarf galaxy in the nearby universe. It has been previously argued that this is a very young system that started forming stars only < 500 Myr ago, but other work has hinted that older (> 1 Gyr) red giant branch (RGB) stars may exist in this galaxy. Our deeper data indeed reveal evidence for an RGB. Underlying old (> 1 Gyr) populations are therefore present in even the most metal-poor systems, implying that star formation started at z > 0.1. The RGB tip (TRGB) magnitude and the properties of Cepheid variables identified from our program indicate that I Zw 18 is farther away (D = 19.0 +/- 1.8 Mpc) than previously believed.
We present new V and I-band HST/ACS photometry of I Zw 18, the most metal-poor blue compact dwarf (BCD) galaxy in the nearby universe. It has been argued in the past that I Zw 18 is a very young system that started forming stars only < 500 Myr ago, b
We report the discovery of broad Wolf-Rayet emission lines in the Multiple Mirror Telescope (MMT) spectrum of the NW component of I Zw 18, the lowest-metallicity blue compact dwarf (BCD) galaxy known. Two broad Wolf-Rayet (W-R) bumps at the wavelengt
Ultraviolet and 21-cm observations suggest that the extremely low-metallicity galaxy, I Zw 18, is a stream-fed galaxy containing a pocket of pristine stars responsible for producing nebular He II recombination emission observed in I Zw18-NW. Far-UV s
Hubble Space Telescope (HST) colour - magnitude diagrams in B, V and R along with long-slit Multiple Mirror Telescope (MMT) spectrophotometric data are used to investigate the evolutionary status of the nearby blue compact dwarf (BCD) galaxy I Zw 18.
Theoretical predictions of Red Giant Branch stars effective temperatures, colors, luminosities and surface chemical abundances are a necessary tool for the astrophysical interpretation of the visible--near infrared integrated light from unresolved st