ﻻ يوجد ملخص باللغة العربية
Hubble Space Telescope (HST) colour - magnitude diagrams in B, V and R along with long-slit Multiple Mirror Telescope (MMT) spectrophotometric data are used to investigate the evolutionary status of the nearby blue compact dwarf (BCD) galaxy I Zw 18. We find that the distance to I Zw 18 should be as high as 20 Mpc, twice the previously accepted distance, to be consistent with existing observational data on the galaxy: colour-magnitude diagrams, the high ionization state of the gas and presence of WR stars in the main body, and the ionization state of the C component. The spectral energy distribution (SED) of the main body of I Zw 18 is consistent with that of a stellar population with age < 5 Myr. However, the presence of large-scale shells observed around the main body suggests that star formation began ~ 20 Myr at the NW end and propagated in the SE direction. Our analysis of colour-magnitude diagrams and of the spectral energy distribution of the C component implies that star formation in this component started < 100 Myr ago at the NW end, propagated to the SE and stopped ~ 15 Myr ago. Thus, I Zw 18 is likely to be one of the youngest nearby extragalactic objects.
We report the discovery of broad Wolf-Rayet emission lines in the Multiple Mirror Telescope (MMT) spectrum of the NW component of I Zw 18, the lowest-metallicity blue compact dwarf (BCD) galaxy known. Two broad Wolf-Rayet (W-R) bumps at the wavelengt
Ultraviolet and 21-cm observations suggest that the extremely low-metallicity galaxy, I Zw 18, is a stream-fed galaxy containing a pocket of pristine stars responsible for producing nebular He II recombination emission observed in I Zw18-NW. Far-UV s
Long-slit Keck II, 4m Kitt Peak, and 4.5m MMT spectrophotometric data are used to investigate the stellar population and the evolutionary status of I Zw 18C, the faint C component of the nearby blue compact dwarf galaxy I Zw 18. Hydrogen H$alpha$ and
IZw18, ever since regarded as the prototypical blue compact dwarf (BCD) galaxy, is, quite ironically, the most atypical BCD known. This is because its large exponential low-surface brightness envelope is not due to an old stellar host but entirely du
We present new WFPC2 narrow band imaging of the blue compact dwarf galaxy I Zw 18, which is host to the lowest-metallicity HII regions known. Images at H-alpha and H-beta are combined with archival broad band images to allow the study of the ionized