ﻻ يوجد ملخص باللغة العربية
Deuterium fractionation is known to enhance the [DCO+]/[HCO+] abundance ratio over the D/H elemental ratio of about 1e-5 in the cold and dense gas typically found in pre-stellar cores. We report the first detection and mapping of very bright DCO+ J=3-2 and J=2-1 lines (3 and 4 K respectively) towards the Horsehead photodissociation region (PDR) observed with the IRAM-30m telescope. The DCO+ emission peaks close to the illuminated warm edge of the nebula (< 50 or about 0.1 pc away). Detailed nonlocal, non-LTE excitation and radiative transfer analyses have been used to determine the prevailing physical conditions and to estimate the DCO+ and H13CO+ abundances from their line intensities. A large [DCO+]/[HCO+] abundance ratio (>= 0.02) is inferred at the DCO+ emission peak, a condensation shielded from the illuminating far-UV radiation field where the gas must be cold (10-20 K) and dense (>= 2x10^5 cm-3). DCO+ is not detected in the warmer photodissociation front, implying a lower [DCO+]/[HCO+] ratio (< 1e-3). According to our gas phase chemical predictions, such a high deuterium fractionation of HCO+ can only be explained if the gas temperature is below 20 K, in good agreement with DCO+ excitation calculations.
We report the detection of D2CO in a sample of starless dense cores, in which we previously measured the degree of CO depletion. The deuterium fractionation is found extremely high, [D2CO]/[H2CO] ~ 1-10 %, similar to that reported in low-mass protost
Although deuterium enrichment of water may provide an essential piece of information in the understanding of the formation of comets and protoplanetary systems, only a few studies up to now have aimed at deriving the HDO/H2O ratio in low-mass star fo
To prepare for the unprecedented spatial and spectral resolution provided by ALMA and Herschel/HIFI, chemical models are being benchmarked against each other. It is obvious that chemical models also need well-constrained observations that can serve a
The [HDO]/[H2O] ratio is a crucial parameter for probing the history of water formation. So far, it has been measured for only three solar type protostars and yielded different results, possibly pointing to a substantially different history in their
The deuterium fraction [N$_2$D$^+$]/[N$_2$H$^+$], may provide information about the ages of dense, cold gas structures, important to compare with dynamical models of cloud core formation and evolution. Here we introduce a complete chemical network wi