ﻻ يوجد ملخص باللغة العربية
Understanding the depletion of heavy elements is a fundamental step towards determining the structure of pre-protostellar cores just prior to collapse. We study the dependence of the NO abundance on position in the pre-protostellar cores L1544 and L183. We observed the 150 GHz and 250~GHz transitions of NO and the 93 GHz transitions of NTHP towards L1544 and L183 using the IRAM 30 m telescope. We compare the variation of the NO column density with position in these objects with the H column density derived from dust emission measurements. We find that NO behaves differently from NTHP and appears to be partially depleted in the high density core of L1544. Other oxygen-containing compounds are also likely to be partially depleted in dense-core nuclei. The principal conclusions are that: the prestellar core L1544 is likely to be carbon-rich; the nitrogen chemistry did not reach equilibrium prior to gravitational collapse, and nitrogen is initially (at densities of the order of $10^4$~cm$^{-3}$) mainly in atomic form; the grain sticking probabilities of atomic C, N and, probably, O are significantly smaller than unity.
We present new results on CO depletion in a sample of nearby pre-stellar cores, based on observations of the millimeter C17O and C18O lines and the 1.3 mm dust emission with the IRAM 30m telescope. In most cases, the distribution of CO is much flatte
We have compared the intensity distribution of molecular line emission with that of dust continuum emission, and modeled molecular line profiles in three different preprotostellar cores in order to test how dynamical evolution is related to chemical
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the submillimeter dust continuum and H2D+ 1_{10}-1_{11} emission toward two evolved, potentially protostellar cores within the Ophiuchus molecular cloud, Oph A SM1 and SM1
The CS molecule is known to be absorbed onto dust in the cold and dense conditions, causing it to get significantly depleted in the central region of cores. This study is aimed to investigate the depletion of the CS molecule using the optically thin
The deuterium fractionation, Dfrac, has been proposed as an evolutionary indicator in pre-protostellar and protostellar cores of low-mass star-forming regions. We investigate Dfrac, with high angular resolution, in the cluster environment surrounding