ﻻ يوجد ملخص باللغة العربية
We present new results on CO depletion in a sample of nearby pre-stellar cores, based on observations of the millimeter C17O and C18O lines and the 1.3 mm dust emission with the IRAM 30m telescope. In most cases, the distribution of CO is much flatter than that of the dust, whereas other tracers, like N2H+, still probe the latter. In the centre of these objects, we estimate CO to be underabundant by a factor 4-15 depending on the cores. The CO underabundance is more pronounced in the central regions and appears to decrease with increasing distance from the core centre. This underabundance is most likely due to the freezing out of CO onto the dust grains in the cold, dense parts of the cores. We find evidence for an increase of the CO depletion degree with the core density.
Understanding the depletion of heavy elements is a fundamental step towards determining the structure of pre-protostellar cores just prior to collapse. We study the dependence of the NO abundance on position in the pre-protostellar cores L1544 and L1
We report the detection of D2CO in a sample of starless dense cores, in which we previously measured the degree of CO depletion. The deuterium fractionation is found extremely high, [D2CO]/[H2CO] ~ 1-10 %, similar to that reported in low-mass protost
Dust grains are the building {blocks} of future planets. They evolve in size, shape and composition during the life cycle of the interstellar medium. We seek to understand the process which leads from diffuse medium grains to dust grains in the vicin
Seven isolated, nearby low-mass starless molecular cloud cores have been observed as part of the Herschel key program Earliest Phases of Star formation (EPoS). By applying a ray-tracing technique to the obtained continuum emission and complementary (
High levels of deuterium fractionation of $rm N_2H^+$ (i.e., $rm D_{frac}^{N_2H^+} gtrsim 0.1$) are often observed in pre-stellar cores (PSCs) and detection of $rm N_2D^+$ is a promising method to identify elusive massive PSCs. However, the physical