ﻻ يوجد ملخص باللغة العربية
The SDSS Data Release 1 includes 1833 DA white dwarfs (WDs) and forms the largest homogeneous sample of WDs. This sample provides the best opportunity to study the statistical properties of WDs. We adopt a recently established theoretical model to calculate the mass and distance of each WD using the observational data. Then we adopt a bin-correction method to correct for selection effects and use the 1/V weight-factor method to calculate the luminosity function, the continuous mass function and the formation rate of these WDs. The SDSS DA WD sample is incomplete and suffers seriously from selection effects. After corrections for the selection effects, only 531 WDs remain. From this final sample we derive the most up-to-date luminosity function and mass function, in which we find a broad peak of WD masses centered around 0.58$M_{odot}$. The DA WD space density is calculated as $8.81times10^{-5}pc^{-3}$ and the formation rate is $2.579times 10^{-13}pc^{-3}yr^{-1}$. The statistical properties of the SDSS DA WD sample are generally in good agreement with previous observational and theoretical studies, and provide us information on the formation and evolution of WDs. However, a larger and more complete all-sky WD sample is still needed to explain some subtle disagreements and unresolved issues.
We investigate the sample of 1175 new nonmagnetic DA white dwarfs with the effective temperatures T_eff > 12000 K, which were extracted from the Data Release 1 of the Sloan Digital Sky Survey. We determined masses, radii, and bolometric luminosities
An initial assessment is made of white dwarf and hot subdwarf stars observed in the Sloan Digital Sky Survey. In a small area of sky (190 square degrees), observed much like the full survey will be, 269 white dwarfs and 56 hot subdwarfs are identifie
Bivariate luminosity functions (LFs) are computed for galaxies in the New York Value-Added Galaxy Catalogue, based on the Sloan Digital Sky Survey Data Release 4. The galaxy properties investigated are the morphological type, inverse concentration in
We present ugriz photometry and optical spectroscopy for 28 DB and DO white dwarfs with temperatures between 28,000K and 45,000K. About 10 of these are particularly well-observed; the remainder are candidates. These are the hottest DB stars yet found
We present a comparative analysis of atmospheric parameters obtained with the so-called photometric and spectroscopic techniques. Photometric and spectroscopic data for 1360 DA white dwarfs from the Sloan Digital Sky Survey (SDSS) are used, as well a