ﻻ يوجد ملخص باللغة العربية
We present a comparative analysis of atmospheric parameters obtained with the so-called photometric and spectroscopic techniques. Photometric and spectroscopic data for 1360 DA white dwarfs from the Sloan Digital Sky Survey (SDSS) are used, as well as spectroscopic data from the Villanova White Dwarf Catalog. We first test the calibration of the ugriz photometric system by using model atmosphere fits to observed data. Our photometric analysis indicates that the ugriz photometry appears well calibrated when the SDSS to AB_95 zeropoint corrections are applied. The spectroscopic analysis of the same data set reveals that the so-called high-log g problem can be solved by applying published correction functions that take into account 3D hydrodynamical effects. However, a comparison between the SDSS and the White Dwarf Catalog spectra also suggests that the SDSS spectra still suffer from a small calibration problem. We then compare the atmospheric parameters obtained from both fitting techniques and show that the photometric temperatures are systematically lower than those obtained from spectroscopic data. This systematic offset may be linked to the hydrogen line profiles used in the model atmospheres. We finally present the results of an analysis aimed at measuring surface gravities using photometric data only.
Among the spectroscopically identified white dwarfs, a fraction smaller than 2% have spectra dominated by carbon lines, mainly molecular C2, but also in a smaller group by CI and CII lines. These are together called DQ white dwarfs. We want to derive
We present ugriz photometry and optical spectroscopy for 28 DB and DO white dwarfs with temperatures between 28,000K and 45,000K. About 10 of these are particularly well-observed; the remainder are candidates. These are the hottest DB stars yet found
White dwarfs with helium-dominated atmospheres comprise approximately 20% of all white dwarfs. Among the open questions are the total masses and the origin of the hydrogen traces observed in a large number and the nature of the deficit of DBs in the
We model the structure of the surface magnetic fields of the hydrogen-rich white dwarfs in the SDSS. We have calculated a grid of state-of-the-art theoretical optical spectra of hydrogen-rich magnetic white dwarfs with magnetic field strengths betwee
We investigate the sample of 1175 new nonmagnetic DA white dwarfs with the effective temperatures T_eff > 12000 K, which were extracted from the Data Release 1 of the Sloan Digital Sky Survey. We determined masses, radii, and bolometric luminosities