ﻻ يوجد ملخص باللغة العربية
Working with the submillimetre continuum map of the Perseus molecular cloud (Hatchell et al. 2005), we aimed to determine the evolutionary stage of each submm core in Perseus, and investigate the lifetimes of these phases. We compile spectral energy distributions (SEDs) from 2MASS, Spitzer IRAC, Michelle, IRAS, SCUBA and Bolocam data. Sources are classified starless/protostellar on the basis of infrared and/or outflow detections and Class I/Class 0 on the basis of Tbol, Lbol/Lsmm and F_{3.6}/F_{850}. In order to investigate the dependence of these evolutionary indicators on mass, we construct radiative transfer models of Class 0 sources. Of the submm cores, 56/103 (54%) are confirmed protostars on the basis of infrared emission or molecular outflows. Of these, 22 are classified Class 1 on the basis of three evolutionary indicators, 34 are Class 0, and the remaining 47 are assumed starless. Perseus contains a much greater fraction of Class 0 sources than either Taurus or Rho Oph. Comparing the protostellar with the T Tauri population, the lifetime of the protostellar phase in Perseus is 0.25-0.67 Myr (95% confidence limits). The relative lifetime of the Class 0 and Class 1 phases are similar. We find that for the same source geometry but different masses, evolutionary indicators such as Tbol vary their value. It is therefore not always appropriate to use a fixed threshold to separate Class 0 and Class I sources. More modelling is required to determine the observational characteristics of the Class 0/Class I boundary over a range of masses.
We present a complete survey of current star formation in the Perseus molecular cloud, made at 850 and 450 micron with SCUBA at the JCMT. Covering 3 deg^2, this submillimetre continuum survey for protostellar activity is second in size only to that o
We present a search for outflows towards 51 submillimetre cores in Perseus. With consistently derived outflow properties from a large homogeneous dataset within one molecular cloud we can investigate further the mass dependence and time evolution of
In our SCUBA survey of Perseus, we find that the fraction of protostellar cores increases towards higher masses and the most massive cores are all protostellar. In this paper we consider the possible explanations of this apparent mass dependence in t
According to a triggered star formation scenario (e.g. Martin-Pintado & Cernicharo 1987) outflows powered by young stellar objects shape the molecular clouds, can dig cavities, and trigger new star formation. NGC 1333 is an active site of low- and in
(Abridged) The c2d Spitzer Legacy project obtained images and photometry with both IRAC and MIPS instruments for five large, nearby molecular clouds. This paper combines information drawn from studies of individual clouds into a combined and updated