ﻻ يوجد ملخص باللغة العربية
In our SCUBA survey of Perseus, we find that the fraction of protostellar cores increases towards higher masses and the most massive cores are all protostellar. In this paper we consider the possible explanations of this apparent mass dependence in the evolutionary status of these cores, and the implications for protostellar evolution and the mapping of the embedded core mass function (CMF) onto the stellar IMF. We consider the following potential causes: dust temperature; selection effects in the submillimetre and in the mid-infrared observations used for pre/protostellar classification; confusion and multiplicity; transient cores; and varying evolutionary timescales. We develop Core Mass Evolution Diagrams (CMEDs) to investigate how the mass evolution of individual cores maps onto the observed CMF. Two physical mechanisms -- short timescales for the evolution of massive cores, and continuing accumulation of mass onto protostellar cores -- best explain the relative excess of protostars in high mass cores and the rarity of massive starless cores. In addition, confusion both increases the likelihood that a protostar is identified within a core, and increases mass assigned to a core. The observed pre/protostellar mass distributions are consistent with faster evolution and a shorter lifetime for higher-mass prestellar cores. We rule out longer timescales for higher-mass prestellar cores. The differences in the prestellar and protostellar mass distributions imply that the prestellar CMF (and possibly the combined pre+protostellar CMF) should be steeper than the IMF. A steeper prestellar CMF can be reconciled with the observed similarity of the CMF and the IMF in some regions if a second opposing effect is present, such as the fragmentation of massive cores into multiple systems.
We found that in regions of high mass star formation the CS emission correlates well with the dust continuum emission and is therefore a good tracer of the total mass while the N$_2$H$^+$ distribution is frequently very different. This is opposite to
We present ammonia observations of 193 dense cores and core candidates in the Perseus molecular cloud made using the Robert F. Byrd Green Bank Telescope. We simultaneously observed the NH3(1,1), NH3(2,2), CCS (2_1 -> 1_0) and CC34S (2_1 -> 1_0) trans
We investigate at a high angular resolution the spatial and kinematic structure of the S255IR high mass star-forming region, which demonstrated recently the first disk-mediated accretion burst in the massive young stellar object. The observations wer
We present a complete survey of current star formation in the Perseus molecular cloud, made at 850 and 450 micron with SCUBA at the JCMT. Covering 3 deg^2, this submillimetre continuum survey for protostellar activity is second in size only to that o
As Pr. Th. Henning said at the conference, cold precursors of high-mass stars are now hot topics. We here propose some observational criteria to identify massive infrared-quiet dense cores which can host the high-mass analogs of Class 0 protostars an