ﻻ يوجد ملخص باللغة العربية
We have observed a new, complete, cooling-core sample with the VLA, in order to understand how the massive black hole in the central galaxy interacts with the local cluster plasma. We find that every cooling core is currently being energized by an active radio jet, which has probably been destabilized by its interaction with the cooling core. We argue that current models of cooling-core radio galaxies need to be improved before they can be used to determine the rate at which the jet is heating the cooling core. We also argue that the extended radio haloes we see in many cooling-core clusters need extended, in situ re-energization, which cannot be supplied solely by the central galaxy.
A currently active radio galaxy sits at the center of almost every strong cooling core. What effect does it have on the cooling core? Could its effect be strong enough to offset the radiative cooling which should be occuring in these cores? In order
Almost every strong cooling core contains an active radio galaxy. Combined radio and X-ray images reveal the dramatic interaction which is taking place between the radio jet and the central cluster plasma. At least two important questions can in prin
One hundred seven ultraluminous X-ray (ULX) sources with 0.3-10.0 keV luminosities in excess of 1e39 erg/s are identified in a complete sample of 127 nearby galaxies. The sample includes all galaxies within 14.5 Mpc above the completeness limits of b
The existence of a correlation between observed radio spectral index (alpha) and redshift (z) has long been used as a method for locating high-z radio galaxies. We use 9 highly spectroscopically complete radio samples, selected at different frequenci
We have formed a complete sample of 26 low redshift (z < 0.3) giant radio galaxies (GRGs) from the WENSS survey, selected at flux densities above 1 Jy at 325 MHz. We present 10.5-GHz observations with the 100-m Effelsberg telescope of 18 sources in t