ترغب بنشر مسار تعليمي؟ اضغط هنا

A new sample of giant radio galaxies from the WENSS survey II - A multi-frequency radio study of a complete sample: Properties of the radio lobes and their environment

252   0   0.0 ( 0 )
 نشر من قبل Arno Schoenmakers
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have formed a complete sample of 26 low redshift (z < 0.3) giant radio galaxies (GRGs) from the WENSS survey, selected at flux densities above 1 Jy at 325 MHz. We present 10.5-GHz observations with the 100-m Effelsberg telescope of 18 sources in this sample. These observations, together with similar data of the remaining eight sources, are combined with data from the WENSS, NVSS and GB6 surveys to study the radio properties of the lobes of these sources at arcminute resolution. We investigate radio source asymmetries, equipartition energy densities in the lobes, the presence of lobe pressure evolution with redshift, the spectral age and the density of the environments of these sources. We find that the armlength asymmetries of GRGs are slightly larger than those of smaller sized 3CR radio galaxies and that these are difficult to explain as arising from orientation effects only. We also find indications that the lobes of the GRGs, despite their large sizes, are still overpressured with respect to their environment. Further, we argue that any evolution of lobe pressure with redshift in these large sources is due to selection effects. A spectral ageing analysis suggests that the GRGs in our sample are the oldest members of the group of relatively high power radio sources whose radio powers have evolved to their currently observed lower values.



قيم البحث

اقرأ أيضاً

We present high sensitivity polarimetric observations in 6 bands covering the 5.5-38 GHz range of a complete sample of 53 compact extragalactic radio sources brighter than 200 mJy at 20 GHz. The observations, carried out with the Australia Telescope Compact Array (ATCA), achieved a 91% detection rate (at 5 sigma). Within this frequency range the spectra of about 95% of sources are well fitted by double power laws, both in total intensity and in polarisation, but the spectral shapes are generally different in the two cases. Most sources were classified as either steep- or peaked-spectrum but less than 50% have the same classification in total and in polarised intensity. No significant trends of the polarisation degree with flux density or with frequency were found. The mean variability index in total intensity of steep-spectrum sources increases with frequency for a 4-5 year lag, while no significant trend shows up for the other sources and for the 8 year lag. In polarisation, the variability index, that could be computed only for the 8 year lag, is substantially higher than in total intensity and has no significant frequency dependence.
54 - J. A. Eilek , F. N. Owen 2006
We have observed a new, complete, cooling-core sample with the VLA, in order to understand how the massive black hole in the central galaxy interacts with the local cluster plasma. We find that every cooling core is currently being energized by an ac tive radio jet, which has probably been destabilized by its interaction with the cooling core. We argue that current models of cooling-core radio galaxies need to be improved before they can be used to determine the rate at which the jet is heating the cooling core. We also argue that the extended radio haloes we see in many cooling-core clusters need extended, in situ re-energization, which cannot be supplied solely by the central galaxy.
We present new deep multi-frequency radio-polarimetric images of a sample of high redshift radio galaxies (HzRGs), having redshift between 1.7 and 4.1. The radio data at 4.7 and 8.2 GHz were taken with the Very Large Array in the A configuration and provide a highest angular resolution of 0.2. Maps of total intensity, radio spectral index, radio polarization and internal magnetic field are presented for each source. The morphology of most objects is that of standard FRII double radio sources, but several contain multiple hot-spots in one or both lobes. Compared to similar samples of HzRGs previously imaged, there is a higher fraction (29%) of compact steep spectrum sources (i.e. sources with a projected linear size less than 20 kpc). Radio cores are identified in about half of the sample and tend to have relatively steep spectra (alpha < -1). Polarization is detected in all but 4 sources, with typical polarization at 8.2 GHz of around 10-20%. The Faraday rotation can be measured in most of the radio galaxies: the observed rotation measure (RM) of 8 radio sources exceeds 100 rad m^{-2} in at least one of the lobes, with large gradients between the two lobes. We find no dependence of Faraday rotation with other properties of the radio sources. If the origin of the Faraday rotation is local to the sources, as we believe, then the intrinsic RM is more than a 1000 rad m^{-2}. Because low redshift radio galaxies residing at the center of clusters usually show extreme RMs, we suggest that the high-z large RM sources also lie in very dense environments. Finally, we find that the fraction of powerful radio galaxies with extreme Faraday rotation increases with redshift, as would be expected if their average environment tends to become denser with decreasing cosmic epoch.
This paper introduces a new program to find high-redshift radio galaxies in the southern hemisphere through ultra-steep spectrum (USS) selection. We define a sample of 234 USS radio sources with spectral indices alpha_408^843 < -1.0 and flux densitie s S_408 > 200 mJy in a region of 0.35 sr, chosen by cross-correlating the revised 408 MHz Molonglo Reference Catalogue, the 843 MHz Sydney University Molonglo Sky Survey and the 1400 MHz NRAO VLA Sky Survey in the overlap region -40 deg < delta < -30 deg. We present Australia Telescope Compact Array (ATCA) high-resolution 1384 and 2368 MHz radio data for each source, which we use to analyse the morphological, spectral index and polarization properties of our sample. We find that 85 per cent of the sources have observed-frame spectral energy distributions that are straight over the frequency range 408-2368 MHz, and that, on average, sources with smaller angular sizes have slightly steeper spectral indices and lower fractional linear polarization. Fractional polarization is anti-correlated with flux density at both 1400 and 2368 MHz. We also use the ATCA data to determine observed-frame Faraday rotation measures for half of the sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا