ﻻ يوجد ملخص باللغة العربية
We present an analysis of the observed broad iron line feature and putative warm absorber in the long 2001 XMM-Newton observation of the Seyfert-1.2 galaxy MCG-6-30-15. The new kerrdisk model we have designed for simulating line emission from accretion disk systems allows black hole spin to be a free parameter in the fit, enabling the user to formally constrain the angular momentum of a black hole, among other physical parameters of the system. In an important extension of previous work, we derive constraints on the black hole spin in MCG-6-30-15 using a self-consistent model for X-ray reflection from the surface of the accretion disk while simultaneously accounting for absorption by dusty photoionized material along the line of sight (the warm absorber). Even including these complications, the XMM-Newton/EPIC-pn data require extreme relativistic broadening of the X-ray reflection spectrum; assuming no emission from within the radius of marginal stability, we derive a formal constraint on the dimensionless black hole spin parameter of a > 0.987 at 90% confidence. The principal unmodeled effect that can significantly reduce the inferred black hole spin is powerful emission from within the radius of marginal stability. Although significant theoretical developments are required to fully understand this region, we argue that the need for a rapidly spinning black hole is robust to physically plausible levels of emission from within the radius of marginal stability. In particular, we show that a non-rotating black hole is strongly ruled out.
Jets launched by the supermassive black holes in the centers of cool-core clusters are the most likely heat source to solve the cooling flow problem. One way for this heating to occur is through generation of a turbulent cascade by jet-inflated bubbl
Some recent observational results impose significant constraints on all the models that have been proposed to explain the Galactic black-hole X-ray sources in the hard state. In particular, it has been found that during the hard state of Cyg X-1 the
In recent work [emph{Quantum tunneling and black hole spectroscopy, Phys. Lett.} B686 (2010) 279, arXiv:0907.4271, by Banerjee et al.], it has been shown, in the tunneling mechanism, the area spacing parameter of a black hole horizon is given by $gam
In black hole X-ray binaries, a misalignment between the spin axis of the black hole and the orbital angular momentum can occur during the supernova explosion that forms the compact object. In this letter we present population synthesis models of Gal
To model the interior of a black hole, a study is made of a spin system with long-range random four-spin couplings that exhibits quantum chaos. The black hole limit corresponds to a system where the microstates are approximately degenerate and equall