ﻻ يوجد ملخص باللغة العربية
To model the interior of a black hole, a study is made of a spin system with long-range random four-spin couplings that exhibits quantum chaos. The black hole limit corresponds to a system where the microstates are approximately degenerate and equally likely, corresponding to the high temperature limit of the spin system. At the leading level of approximation, reconstruction of bulk physics implies that local probes of the black hole should exhibit free propagation and unitary local evolution. We test the conjecture that a particular mean field Hamiltonian provides such a local bulk Hamiltonian by numerically solving the exact Schrodinger equation and comparing the time evolution to the approximate mean field time values. We find excellent agreement between the two time evolutions for timescales smaller than the scrambling time. In earlier work, it was shown bulk evolution along comparable timeslices is spoiled by the presence of the curvature singularity, thus the matching found in the present work provides evidence of the success of this approach to interior holography. The numerical solutions also provide a useful testing ground for various measures of quantum chaos and global scrambling. A number of different observables, such as entanglement entropy, out-of-time-order correlators, and trace distance are used to study these effects. This leads to a suitable definition of scrambling time, and evidence is presented showing a logarithmic variation with the system size.
We analyze the vacuum polarization induced by a quantum charged scalar field near the inner horizon of a charged (Reissner-Nordstrom-de Sitter) black hole in quantum states that start out as regular states near an initial Cauchy surface. Contrary to
We argue that a convenient way to analyze instabilities of black holes in AdS space is via Bragg-Williams construction of a free energy function. Starting with a pedagogical review of this construction in condensed matter systems and also its impleme
Several recent papers have shown a close relationship between entanglement wedge reconstruction and the unitarity of black hole evaporation in AdS/CFT. The analysis of these papers however has a rather puzzling feature: all calculations are done usin
We study scalar field configurations around Kerr black holes with a time-independent energy-momentum tensor. These stationary `scalar clouds, confined near the black hole (BH) by their own mass or a mirror at fixed radius, exist at the threshold for
We introduce a general class of toy models to study the quantum information-theoretic properties of black hole radiation. The models are governed by a set of isometries that specify how microstates of the black hole at a given energy evolve to entang