ﻻ يوجد ملخص باللغة العربية
The galaxy cluster 1E0657-56 (z = 0.296) is remarkably well-suited for addressing outstanding issues in both galaxy evolution and fundamental physics. We present a reconstruction of the mass distribution from both strong and weak gravitational lensing data. Multi-color, high-resolution HST ACS images allow detection of many more arc candidates than were previously known, especially around the subcluster. Using the known redshift of one of the multiply imaged systems, we determine the remaining source redshifts using the predictive power of the strong lens model. Combining this information with shape measurements of weakly lensed sources, we derive a high-resolution, absolutely-calibrated mass map, using no assumptions regarding the physical properties of the underlying cluster potential. This map provides the best available quantification of the total mass of the central part of the cluster. We also confirm the result from Clowe et al. (2004,2006a).
Weak gravitational lensing is considered to be one of the most powerful tools to study the mass and the mass distribution of galaxy clusters. However, the mass-sheet degeneracy transformation has limited its success. We present a novel method for a c
We have shown that the cluster-mass reconstruction method which combines strong and weak gravitational lensing data, developed in the first paper in the series, successfully reconstructs the mass distribution of a simulated cluster. In this paper we
In the hierarchical structure formation model of the universe, galaxy clusters are assembled through a series of mergers. Accordingly, it is expected that galaxy clusters in the early universe are actively forming and dynamically young. Located at a
After a brief introduction to gravitational lensing theory, a rough overview of the types of gravitational lensing statistics that have been performed so far will be given. I shall then concentrate on recent results of galaxy-galaxy lensing, which in
We present a weak-lensing analysis of the merging {em Frontier Fields} (FF) cluster Abell~2744 using new Subaru/Suprime-Cam imaging. The wide-field lensing mass distribution reveals this cluster is comprised of four distinct substructures. Simultaneo