ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the Mass of the Emerging Galaxy Cluster SpARCS1049+56 at z=1.71 with Infrared Weak Lensing

93   0   0.0 ( 0 )
 نشر من قبل Kyle Finner
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the hierarchical structure formation model of the universe, galaxy clusters are assembled through a series of mergers. Accordingly, it is expected that galaxy clusters in the early universe are actively forming and dynamically young. Located at a high redshift of z=1.71, SpARCS1049+56 offers a unique look into the galaxy cluster formation process. This cluster has been shown to be rich in cluster galaxies and to have intense star formation. Its high redshift pushes a weak-lensing analysis beyond the regime of the optical spectrum into that of the infrared. Equipped with deep Hubble Space Telescope Wide Field Camera 3 UVIS and IR observations, we present a weak-lensing characterization of SpARCS1049+56. As few IR weak-lensing studies have been performed, we discuss the details of PSF modeling and galaxy shape measurement for an IR weak-lensing procedure and the systematics that come with the territory. It will be critical to understand these systematics in future weak-lensing studies in the IR with the next generation space telescopes such as JWST, Euclid, and WFIRST. Through a careful analysis, the mass distribution of this young galaxy cluster is mapped and the convergence peak is detected at a 3.3 sigma level. The weak-lensing mass of the cluster is estimated to be $3.5pm1.2times10^{14} text{M}_odot$ and is consistent with the mass derived from a mass-richness scaling relation. This mass is extreme for a cluster at such a high redshift and suggests that SpARCS1049+56 is rare in the standard $Lambda$CDM universe.



قيم البحث

اقرأ أيضاً

We explore the effect of massive neutrinos on the weak lensing shear bispectrum using the Cosmological Massive Neutrino Simulations. We find that the primary effect of massive neutrinos is to suppress the amplitude of the bispectrum with limited effe ct on the bispectrum shape. The suppression of the bispectrum amplitude is a factor of two greater than the suppression of the small scale power-spectrum. For an LSST-like weak lensing survey that observes half of the sky with five tomographic redshift bins, we explore the constraining power of the bispectrum on three cosmological parameters: the sum of the neutrino mass $sum m_ u$, the matter density $Omega_m$ and the amplitude of primordial fluctuations $A_s$. Bispectrum measurements alone provide similar constraints to the power spectrum measurements and combining the two probes leads to significant improvements than using the latter alone. We find that the joint constraints tighten the power spectrum $95%$ constraints by $sim 32%$ for $sum m_ u$, $13%$ for $Omega_m$ and $57%$ for $A_s$ .
102 - Keiichi Umetsu 2020
Weak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here we present a self-contained pedagogical review of cluster--galaxy weak lensing, covering a range of top ics relevant to its cosmological and astrophysical applications. We begin by reviewing the theoretical foundations of gravitational lensing from first principles, with special attention to the basics and advanced techniques of weak gravitational lensing. We summarize and discuss key findings from recent cluster--galaxy weak-lensing studies on both observational and theoretical grounds, with a focus on cluster mass profiles, the concentration--mass relation, the splashback radius, and implications from extensive mass calibration efforts for cluster cosmology.
We present a weak lensing study of the galaxy cluster IDCS J1426.5+3508 at $z=1.75$, which is the highest redshift strong lensing cluster known and the most distant cluster for which a weak lensing analysis has been undertaken. Using F160W, F814W, an d F606W observations with the Hubble Space Telescope, we detect tangential shear at $2sigma$ significance. Fitting a Navarro-Frenk-White mass profile to the shear with a theoretical median mass-concentration relation, we derive a mass $M_{200,mathrm{crit}}=2.3^{+2.1}_{-1.4}times10^{14}$ M$_{odot}$. This mass is consistent with previous mass estimates from the Sunyaev-Zeldovich (SZ) effect, X-ray, and strong lensing. The cluster lies on the local SZ-weak lensing mass scaling relation observed at low redshift, indicative of minimal evolution in this relation.
72 - Marusa Bradac 2006
The galaxy cluster 1E0657-56 (z = 0.296) is remarkably well-suited for addressing outstanding issues in both galaxy evolution and fundamental physics. We present a reconstruction of the mass distribution from both strong and weak gravitational lensin g data. Multi-color, high-resolution HST ACS images allow detection of many more arc candidates than were previously known, especially around the subcluster. Using the known redshift of one of the multiply imaged systems, we determine the remaining source redshifts using the predictive power of the strong lens model. Combining this information with shape measurements of weakly lensed sources, we derive a high-resolution, absolutely-calibrated mass map, using no assumptions regarding the physical properties of the underlying cluster potential. This map provides the best available quantification of the total mass of the central part of the cluster. We also confirm the result from Clowe et al. (2004,2006a).
159 - D. Gruen , S. Seitz , M. R. Becker 2015
Intrinsic variations of the projected density profiles of clusters of galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We present a semi-analytical model to account for this effect, based on a combination of variations in halo concentration, ellipticity and orientation, and the presence of correlated haloes. We calibrate the parameters of our model at the 10 per cent level to match the empirical cosmic variance of cluster profiles at M_200m=10^14...10^15 h^-1 M_sol, z=0.25...0.5 in a cosmological simulation. We show that weak lensing measurements of clusters significantly underestimate mass uncertainties if intrinsic profile variations are ignored, and that our model can be used to provide correct mass likelihoods. Effects on the achievable accuracy of weak lensing cluster mass measurements are particularly strong for the most massive clusters and deep observations (with ~20 per cent uncertainty from cosmic variance alone at M_200m=10^15 h^-1 M_sol and z=0.25), but significant also under typical ground-based conditions. We show that neglecting intrinsic profile variations leads to biases in the mass-observable relation constrained with weak lensing, both for intrinsic scatter and overall scale (the latter at the 15 per cent level). These biases are in excess of the statistical errors of upcoming surveys and can be avoided if the cosmic variance of cluster profiles is accounted for.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا