ﻻ يوجد ملخص باللغة العربية
We explore semi-complete self-similar solutions for the polytropic gas dynamics involving self-gravity under spherical symmetry, examine behaviours of the sonic critical curve, and present new asymptotic collapse solutions that describe `quasi-static asymptotic behaviours at small radii and large times. These new `quasi-static solutions with divergent mass density approaching the core can have self-similar oscillations. Earlier known solutions are summarized. Various semi-complete self-similar solutions involving such novel asymptotic solutions are constructed, either with or without a shock. In contexts of stellar core collapse and supernova explosion, a hydrodynamic model of a rebound shock initiated around the stellar degenerate core of a massive progenitor star is presented. With this dynamic model framework, we attempt to relate progenitor stars and the corresponding remnant compact stars: neutron stars, black holes, and white dwarfs.
In broad astrophysical contexts of large-scale gravitational collapses and outflows and as a basis for various further astrophysical applications, we formulate and investigate a theoretical problem of self-similar MHD for a non-rotating polytropic ga
In the supercritical range of the polytropic indices $gammain(1,frac43)$ we show the existence of smooth radially symmetric self-similar solutions to the gravitational Euler-Poisson system. These solutions exhibit gravitational collapse in the sense
We consider the nonlinear heat equation $u_t = Delta u + |u|^alpha u$ with $alpha >0$, either on ${mathbb R}^N $, $Nge 1$, or on a bounded domain with Dirichlet boundary conditions. We prove that in the Sobolev subcritical case $(N-2) alpha <4$, for
We show that self-similar solutions for the mean curvature flow, surface diffusion and Willmore flow of entire graphs are stable upon perturbations of initial data with small Lipschitz norm. Roughly speaking, the perturbed solutions are asymptoticall
We show the existence of self-similar solutions for the Muskat equation. These solutions are parameterized by $0<s ll 1$; they are exact corners of slope $s$ at $t=0$ and become smooth in $x$ for $t>0$.