ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-regulated reionization

282   0   0.0 ( 0 )
 نشر من قبل Ilian Iliev
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ilian T. Iliev




اسأل ChatGPT حول البحث

Recently, we have presented the first large-scale radiative transfer simulations of reionization. Here we present new simulations which extend the source halo mass range downward to 10^8M_solar, to capture the full range of halo masses thought to be primarily responsible for reionization by their star formation following atomic hydrogen radiative cooling and gravitational collapse. Haloes below about 10^9M_solar, however, are subject to Jeans-mass filtering in the ionized regions, which suppresses their baryonic content and their ability to release ionizing radiation. By including these smaller-mass haloes but accounting for their suppression, too, we find that reionization is ``self-regulating, as follows. As the mean ionized fraction rises, so does the fraction of the volume within which suppression occurs. Hence, the degree of suppression is related to the mean ionized fraction. Since low-mass haloes with high emissivity achieve a given mean ionized fraction earlier than do those with low efficiency, Jeans-mass filtering compensates for the difference in the emissivity of the suppressible haloes in these two cases. As a result, in the presence of lower-mass source haloes, reionization begins earlier, but the later stages of reionization and the time of overlap are dictated by the efficiency of the higher-mass haloes, independent of the efficiency of the suppressible, lower-mass haloes. Reionization histories consistent with current observational constraints are shown to be achievable with standard stellar sources in haloes above 10^8M_solar. Neither minihalos nor exotic sources are required, and the phenomenon of ``double reionization previously suggested does not occur. (abridged)



قيم البحث

اقرأ أيضاً

We calculate the secondary anisotropies in the CMB produced by inhomogeneous reionization from simulations in which the effects of radiative and stellar feedback effects on galaxy formation have been included. This allows to self-consistently determi ne the beginning ($z_iapprox 30$), the duration ($ delta zapprox 20$) and the (nonlinear) evolution of the reionization process for a critical density CDM model. In addition, from the simulated spatial distribution of ionized regions, we are able to calculate the evolution of the two-point ionization correlation function, $C_chi$, and obtain the power spectrum of the anisotropies, $C_ell$, in the range $5000 < ell < 10^6$. The power spectrum has a broad maximum around $ell approx 30000$, where it reaches the value $2times 10^{-12}$. We also show that the angular correlation function $C(theta)$ is not Gaussian, but at separation angles $% theta lower.5exhbox{ltsima} 10^{-4}$ rad it can be approximated by a modified Lorentzian shape; at larger separations an anticorrelation signal is predicted. Detection of signals as above will be possible with future mm-wavelength interferometers like ALMA, which appears as an optimum instrument to search for signatures of inhomogeneous reionization.
141 - Jing Xu , Yu Pan , Xinglin Pan 2021
The ResNet and its variants have achieved remarkable successes in various computer vision tasks. Despite its success in making gradient flow through building blocks, the simple shortcut connection mechanism limits the ability of re-exploring new pote ntially complementary features due to the additive function. To address this issue, in this paper, we propose to introduce a regulator module as a memory mechanism to extract complementary features, which are further fed to the ResNet. In particular, the regulator module is composed of convolutional RNNs (e.g., Convolutional LSTMs or Convolutional GRUs), which are shown to be good at extracting Spatio-temporal information. We named the new regulated networks as RegNet. The regulator module can be easily implemented and appended to any ResNet architecture. We also apply the regulator module for improving the Squeeze-and-Excitation ResNet to show the generalization ability of our method. Experimental results on three image classification datasets have demonstrated the promising performance of the proposed architecture compared with the standard ResNet, SE-ResNet, and other state-of-the-art architectures.
We present a series of simulations of the self--regulated growth of supermassive black holes (SMBHs) in galaxies via three different fueling mechanisms: major mergers, minor mergers, and disk instabilities. The SMBHs in all three scenarios follow the same black hole fundamental plane (BHFP) and correlation with bulge binding energy seen in simulations of major mergers, and observed locally. Furthermore, provided that the total gas supply is significantly larger than the mass of the SMBH, its limiting mass is not influenced by the amount of gas available or the efficiency of black hole growth. This supports the assertion that SMBHs accrete until they reach a critical mass at which feedback is sufficient to unbind the gas locally, terminating the inflow and stalling further growth. At the same time, while minor and major mergers follow the same projected correlations (e.g., the $M_{BH}-sigma$ and Magorrian relations), SMBHs grown via disk instabilities do not, owing to structural differences between the host bulges. This finding is supported by recent observations of SMBHs in pseudobulges and bulges in barred systems, as compared to those hosted by classical bulges. Taken together, this provides support for the BHFP and binding energy correlations as being more fundamental than other proposed correlations in that they reflect the physical mechanism driving the co-evolution of SMBHs and spheroids.
236 - E. R. Parkin , S. A. Sim 2013
In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shock s on the radiative driving of the stellar winds using steady state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, LX remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind-driving, we term this scenario as self regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppresses the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveals reasonable agreement in terms of log(LX/Lbol). The inclusion of self regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).
The formation of protoplanetary discs during the collapse of molecular dense cores is significantly influenced by angular momentum transport, notably by the magnetic torque. In turn, the evolution of the magnetic field is determined by dynamical proc esses and non-ideal MHD effects such as ambipolar diffusion. Considering simple relations between various timescales characteristic of the magnetized collapse, we derive an expression for the early disc radius, $ r simeq 18 , {rm AU} , left({eta_{rm AD} / 0.1 , {rm s}} right)^{2/9} left({B_z / 0.1, {rm G}} right) ^{-4/9} left({M / 0.1 msol} right) ^{1/3},$ where $M$ is the total disc plus protostar mass, $eta_mathrm{AD}$ is the ambipolar diffusion coefficient and $B_z$ is the magnetic field in the inner part of the core. This is about significantly smaller than the discs that would form if angular momentum was conserved. The analytical predictions are confronted against a large sample of 3D, non-ideal MHD collapse calculations covering variations of a factor 100 in core mass, a factor 10 in the level of turbulence, a factor 5 in rotation, and magnetic mass-to-flux over critical mass-to-flux ratios 2 and 5. The disc radius estimates are found to agree with the numerical simulations within less than a factor 2. A striking prediction of our analysis is the weak dependence of circumstellar disc radii upon the various relevant quantities, suggesting weak variations among class-0 disc sizes. In some cases, we note the onset of large spiral arms beyond this radius.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا