ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical evidence of the age--metallicity relation in the Milky Way disk

129   0   0.0 ( 0 )
 نشر من قبل Helio J. Rocha-Pinto
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف H. J. Rocha-Pinto




اسأل ChatGPT حول البحث

We studied the relationship between the average stellar abundance of several elements and the orbital evolution of stars in the neighbourhood of the Sun, using both observational data for 325 late-type dwarfs in a volume-complete sample and simulations of the orbital diffusion. Metallicities, ages, and initial position and velocities for the simulated stars are sampled from empirical distributions of these quantities in the Milky Way. We found that that there is a relationship between the average stellar abundance of Fe, Na, Si, Ca, Ni, and Ba and the mean orbital radius of stars currently passing through the solar neighbourhood. The greater the difference between the mean orbital radius and the solar Galactocentric distance, the more deficient the star is, on average, in these chemical species. The stars that take a longer time to come from their birthplaces to arrive in the present solar neighbourhood are more likely to be more metal-poor than those that were born here. This result is a direct, independent indication that a tightly defined Galactic age-metallicity relation exists.



قيم البحث

اقرأ أيضاً

Stellar ages are a crucial component to studying the evolution of the Milky Way. Using Gaia DR2 distance estimates, it is now possible to estimate stellar ages for a larger volume of evolved stars through isochrone matching. This work presents [M/H]- age and [$alpha$/M]-age relations derived for different spatial locations in the Milky Way disc. These relations are derived by hierarchically modelling the star formation history of stars within a given chemical abundance bin. For the first time, we directly observe that significant variation is apparent in the [M/H]-age relation as a function of both Galactocentric radius and distance from the disc mid-plane. The [M/H]-age relations support claims that radial migration has a significant effect in the plane of the disc. Using the [M/H] bin with the youngest mean age at each radial zone in the plane of the disc, the present-day metallicity gradient is measured to be $-0.059 pm 0.010$ dex kpc$^{-1}$, in agreement with Cepheids and young field stars. We find a vertically flared distribution of young stars in the outer disc, confirming predictions of models and previous observations. The mean age of the [M/H]-[$alpha$/M] distribution of the solar neighborhood suggests that the high-[M/H] stars are not an evolutionary extension of the low-$alpha$ sequence. Our observational results are important constraints to Galactic simulations and models of chemical evolution.
We study the relationship between age, metallicity, and alpha-enhancement of FGK stars in the Galactic disk. The results are based upon the analysis of high-resolution UVES spectra from the Gaia-ESO large stellar survey. We explore the limitations of the observed dataset, i.e. the accuracy of stellar parameters and the selection effects that are caused by the photometric target preselection. We find that the colour and magnitude cuts in the survey suppress old metal-rich stars and young metal-poor stars. This suppression may be as high as 97% in some regions of the age-metallicity relationship. The dataset consists of 144 stars with a wide range of ages from 0.5 Gyr to 13.5 Gyr, Galactocentric distances from 6 kpc to 9.5 kpc, and vertical distances from the plane 0 < |Z| < 1.5 kpc. On this basis, we find that i) the observed age-metallicity relation is nearly flat in the range of ages between 0 Gyr and 8 Gyr; ii) at ages older than 9 Gyr, we see a decrease in [Fe/H] and a clear absence of metal-rich stars; this cannot be explained by the survey selection functions; iii) there is a significant scatter of [Fe/H] at any age; and iv) [Mg/Fe] increases with age, but the dispersion of [Mg/Fe] at ages > 9 Gyr is not as small as advocated by some other studies. In agreement with earlier work, we find that radial abundance gradients change as a function of vertical distance from the plane. The [Mg/Fe] gradient steepens and becomes negative. In addition, we show that the inner disk is not only more alpha-rich compared to the outer disk, but also older, as traced independently by the ages and Mg abundances of stars.
We use the extensive $Gaia$ Data Release 2 set of Long Period Variables to select a sample of Oxygen-rich Miras throughout the Milky Way disk and bulge for study. Exploiting the relation between Mira pulsation period and stellar age/chemistry, we sli ce the stellar density of the Galactic disk and bulge as a function of period. We find the morphology of both components evolves as a function of stellar age/chemistry with the stellar disk being stubby at old ages, becoming progressively thinner and more radially extended at younger stellar ages, consistent with the picture of inside-out and upside-down formation of the Milky Ways disk. We see evidence of a perturbed disk, with large-scale stellar over-densities visible both in and away from the stellar plane. We find the bulge is well modelled by a triaxial boxy distribution with an axis ratio of $sim [1:0.4:0.3]$. The oldest of the Miras ($sim$ 9-10 Gyr) show little bar-like morphology, whilst the younger stars appear inclined at a viewing angle of $sim 21^{circ}$ to the Sun-Galactic Centre line. This suggests that bar formation and buckling took place 8-9 Gyr ago, with the older Miras being hot enough to avoid being trapped by the growing bar. We find the youngest Miras to exhibit a strong peanut morphology, bearing the characteristic X-shape of an inclined bar structure.
102 - Angus Beane , Melissa K. Ness , 2018
The orbital properties of stars in the disk are signatures of their formation, but they are also expected to change over time due to the dynamical evolution of the Galaxy. Stellar orbits can be quantified by three dynamical actions, J_r, L_z, and J_z , which provide measures of the orbital eccentricity, guiding radius, and non-planarity, respectively. Changes in these dynamical actions over time reflect the strength and efficiency of the evolutionary processes that drive stellar redistributions. We examine how dynamical actions of stars are correlated with their age using two samples of stars with well-determined ages: 78 solar twin stars (with ages to ~5%) and 4376 stars from the APOKASC2 sample (~20%). We compute actions using spectroscopic radial velocities from previous surveys and parallax and proper motion measurements from Gaia DR2. We find weak gradients in all actions with stellar age, of (7.51 +/- 0.52, -29.0 +/- 1.83, 1.54 +/- 0.18) kpc km/s/Gyr for J_r, L_z, and J_z, respectively. There is, however, significant scatter in the action-age relation. We caution that our results will be affected by the restricted spatial extent of our sample, particularly in the case of J_z. Nevertheless, these action-age gradients and their associated variances provide strong constraints on the efficiency of the mechanisms that drive the redistribution of stellar orbits over time and demonstrate that actions are informative as to stellar age. The shallow action-age gradients combined with the large dispersion in each action at a given age, however, renders the prospect of age inference from orbits of individual stars bleak. Using the precision measurements of [Fe/H] and [$alpha$/Fe] for our stars we investigate the abundance-action relationship and find weak correlations. Similar to our stellar age results, dynamical actions afford little discriminating power between low- and high-$alpha$ stars.
In the Milky Way, the thick disk can be defined using individual stellar abundances, kinematics, or age; or geometrically, as stars high above the mid-plane. In nearby galaxies, where only a geometric definition can be used, thick disks appear to hav e large radial scale-lengths, and their red colors suggest that they are uniformly old. The Milky Ways geometrically thick disk is also radially extended, but it is far from chemically uniform: alpha-enhanced stars are confined within the inner Galaxy. In simulated galaxies, where old stars are centrally concentrated, geometrically thick disks are radially extended, too. Younger stellar populations flare in the simulated disks outer regions, bringing those stars high above the mid-plane. The resulting geometrically thick disks therefore show a radial age gradient, from old in their central regions to younger in their outskirts. Based on our age estimates for a large sample of giant stars in the APOGEE survey, we can now test this scenario for the Milky Way. We find that the geometrically-defined thick disk in the Milky Way has indeed a strong radial age gradient: the median age for red clump stars goes from ~9 Gyr in the inner disk to 5 Gyr in the outer disk. We propose that at least some nearby galaxies could also have thick disks that are not uniformly old, and that geometrically thick disks might be complex structures resulting from different formation mechanisms in their inner and outer parts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا