ترغب بنشر مسار تعليمي؟ اضغط هنا

Absolute motions of globular clusters. II. [HST astrometry and VLT radial velocities in NGC6397]

59   0   0.0 ( 0 )
 نشر من قبل Luigi Bedin Rolly
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Milone




اسأل ChatGPT حول البحث

In this paper we present a new, accurate determination of the three components of the absolute space velocity of the Galactic globular cluster NGC6397 (l 338d, b -12d). We used three HST/WFPC2 fields with multi-epoch observations to obtain astrometric measurements of objects in three different fields in this cluster. The identification of 33 background galaxies with sharp nuclei allowed us to determine an absolute reference point and measure the absolute proper motion of the cluster. The third component has been obtained from radial velocities measured on spectra from the multi-fiber spectrograph FLAMES at UT2-VLT. We find [mu_alpha cos(delta), mu_delta](J2000.0) = [+3.39 +/- 0.15, -17.55 +/- 0.15] mas/yr, and V_rad = +18.36 +/- 0.09 (+/-0.10) km/s. Assuming a Galactic potential, we calculate the cluster orbit for various assumed distances, and briefly discuss the implications.



قيم البحث

اقرأ أيضاً

Proper motions (PMs) are crucial to fully understand the internal dynamics of globular clusters (GCs). To that end, the Hubble Space Telescope (HST) Proper Motion (HSTPROMO) collaboration has constructed large, high-quality PM catalogues for 22 Galac tic GCs. We highlight some of our exciting recent results: the first directly-measured radial anisotropy profiles for a large sample of GCs; the first dynamical distance and mass-to-light (M/L) ratio estimates for a large sample of GCs; and the first dynamically-determined masses for hundreds of blue-straggler stars (BSSs) across a large GC sample.
164 - Ivo Saviane 2012
Well determined radial velocities and abundances are essential for analyzing the properties of the Globular Cluster system of the Milky Way. However more than 50% of these clusters have no spectroscopic measure of their metallicity. In this context, this work provides new radial velocities and abundances for twenty Milky Way globular clusters which lack or have poorly known values for these quantities. The radial velocities and abundances are derived from spectra obtained at the Ca II triplet using the FORS2 imager and spectrograph at the VLT, calibrated with spectra of red giants in a number of clusters with well determined abundances. For about half of the clusters in our sample we present significant revisions of the existing velocities or abundances, or both. We also confirm the existence of a sizable abundance spread in the globular cluster M54, which lies at the center of the Sagittarius dwarf galaxy. In addition evidence is provided for the existence of a small intrinsic internal abundance spread (sigma [Fe/H](int) ~ 0.11-0.14 dex, similar to that of M54) in the luminous distant globular cluster NGC 5824. This cluster thus joins the small number of Galactic globular clusters known to possess internal metallicity ([Fe/H]) spreads.
Spectra of composite systems (e.g., spectroscopic binaries) contain spatial information that can be retrieved by measuring the radial velocities (i.e., Doppler shifts) of the components in four observations with the slit rotated by 90 degrees in the sky. By using basic concepts of slit spectroscopy we show that the geometry of composite systems can be reliably retrieved by measuring only radial velocity differences taken with different slit angles. The spatial resolution is determined by the precision with which differential radial velocities can be measured. We use the UVES spectrograph at the VLT to observe the known spectroscopic binary star HD 188088 (HIP 97944), which has a maximum expected separation of 23 milli-arcseconds. We measure an astrometric signal in radial velocity of 276 ms, which corresponds to a separation between the two components at the time of the observations of 18 $pm2$ milli-arcseconds. The stars were aligned east-west. We describe a simple optical device to simultaneously record pairs of spectra rotated by 180 degrees, thus reducing systematic effects. We compute and provide the function expressing the shift of the centroid of a seeing-limited image in the presence of a narrow slit.The proposed technique is simple to use and our test shows that it is amenable for deriving astrometry with milli-arcsecond accuracy or better, beyond the diffraction limit of the telescope. The technique can be further improved by using simple devices to simultaneously record the spectra with 180 degrees angles.With tachoastrometry, radial velocities and astrometric positions can be measured simultaneously for many double line system binaries in an easy way. The method is not limited to binary stars, but can be applied to any astrophysical configuration in which spectral lines are generated by separate (non-rotational symmetric) regions.
Using the recently commissioned multi-object spectrograph AAOmega on the 3.9m AAT we have obtained medium-resolution near-infrared spectra for 10,500 stars in and around five southern globular clusters. The targets were 47 Tuc, M12, M30, M55 and NGC 288. We have measured radial velocities to +/- 1 km/s with the cross correlation method and estimated metallicity, effective temperature, surface gra vity and rotational velocity for each star by fitting synthetic model spectra. An analysis of the velocity maps and velocity dispersion of member stars revealed systemic rotation in four of the target clusters.
76 - S. Vasquez 2018
Although the globular clusters in the Milky Way have been studied for a long time, a significant fraction of them lack homogeneous metallicity and radial velocity measurements. In an earlier paper we presented the first part of a project to obtain me tallicities and radial velocities of Galactic globular clusters from multiobject spectroscopy of their member stars using the ESO Very Large Telescope. In this paper we add metallicities and radial velocities for a new sample of 28 globular clusters, including in particular globular clusters in the MW halo and the Galactic bulge. Together with our previous results, this study brings the number of globular clusters with homogeneous measurements to $sim 69$ % of those listed in the W. Harris catalogue. As in our previous work, we have used the CaII triplet lines to derive metallicities and radial velocities. For most of the clusters in this study, this is the first analysis based on spectroscopy of individual member stars. The metallicities derived from the CaII triplet are then compared to the results of our parallel study based on spectral fitting in the optical region and the implications for different calibrations of the CaII triplet line strengths are discussed. We also comment on some interesting clusters and investigate the presence of an abundance spread in the globular clusters here. A hint of a possible intrinsic spread is found for NGC 6256, which therefore appears to be a good candidate for further study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا