ترغب بنشر مسار تعليمي؟ اضغط هنا

Homogeneous metallicities and radial velocities for Galactic globular clusters. II. New CaT metallicities for 28 distant and reddened globular clusters

77   0   0.0 ( 0 )
 نشر من قبل Enrico V. Held
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Vasquez




اسأل ChatGPT حول البحث

Although the globular clusters in the Milky Way have been studied for a long time, a significant fraction of them lack homogeneous metallicity and radial velocity measurements. In an earlier paper we presented the first part of a project to obtain metallicities and radial velocities of Galactic globular clusters from multiobject spectroscopy of their member stars using the ESO Very Large Telescope. In this paper we add metallicities and radial velocities for a new sample of 28 globular clusters, including in particular globular clusters in the MW halo and the Galactic bulge. Together with our previous results, this study brings the number of globular clusters with homogeneous measurements to $sim 69$ % of those listed in the W. Harris catalogue. As in our previous work, we have used the CaII triplet lines to derive metallicities and radial velocities. For most of the clusters in this study, this is the first analysis based on spectroscopy of individual member stars. The metallicities derived from the CaII triplet are then compared to the results of our parallel study based on spectral fitting in the optical region and the implications for different calibrations of the CaII triplet line strengths are discussed. We also comment on some interesting clusters and investigate the presence of an abundance spread in the globular clusters here. A hint of a possible intrinsic spread is found for NGC 6256, which therefore appears to be a good candidate for further study.



قيم البحث

اقرأ أيضاً

167 - Ivo Saviane 2012
Well determined radial velocities and abundances are essential for analyzing the properties of the Globular Cluster system of the Milky Way. However more than 50% of these clusters have no spectroscopic measure of their metallicity. In this context, this work provides new radial velocities and abundances for twenty Milky Way globular clusters which lack or have poorly known values for these quantities. The radial velocities and abundances are derived from spectra obtained at the Ca II triplet using the FORS2 imager and spectrograph at the VLT, calibrated with spectra of red giants in a number of clusters with well determined abundances. For about half of the clusters in our sample we present significant revisions of the existing velocities or abundances, or both. We also confirm the existence of a sizable abundance spread in the globular cluster M54, which lies at the center of the Sagittarius dwarf galaxy. In addition evidence is provided for the existence of a small intrinsic internal abundance spread (sigma [Fe/H](int) ~ 0.11-0.14 dex, similar to that of M54) in the luminous distant globular cluster NGC 5824. This cluster thus joins the small number of Galactic globular clusters known to possess internal metallicity ([Fe/H]) spreads.
We have obtained high-res, high S/N ratio CCD echelle spectra of 10 bright red giants in 3 GCs (47Tuc, NGC6752 and NGC6397) roughly spanning the range of metallicities of the galactic GC system; they reveal no evidence of star to star variation of [F e/H] in these 3 GCs. A large set of high quality literature data (EWs from high-res CCD spectra) was re-analyzed in a self-consistent way to integrate our data and derive new [Fe/H] for more than 160 bright red giants in 24 GCs. This set was used to define a new [Fe/H] scale for GCs based on high quality, direct spectroscopic data, on updated model atmospheres from the grid of Kurucz (1992) and on a careful fine abundance analysis (using a common set of atomic and atmospheric parameters for all stars). Given the high internal homogeneity, our new scale supersedes the discrepancies of previous attempts. The internal uncertainty in [Fe/H] is very small: 0.06 dex (24 GCs) on average, that can be interpreted as the mean precision of cluster ranking. Compared to our system, metallicities on the widely used Zinn and Wests scale are about 0.10dex higher for [Fe/H]$>-1$, 0.23dex lower for $-1<[Fe/H]<-1.9$ and 0.11dex too high for [Fe/H]$<-1.9$: the non-linearity is significant at 3$sigma$ level. A quadratic transformation corrects older values to the new scale in the range of our calibrating GCs ($-2.24le[Fe/H]_{ZW}le-0.51$). A minor disagreement is found at low [Fe/H] between the metallicity scale based on field and cluster RR Lyraes (via a new calibration of the $Delta$S index) and our new GCs metallicities, that could be ascribed to non-linearity in the [Fe/H]$-Delta$S relationship. The impact of new metallicities on major astrophysical problems is exemplified through the Oosterhoff effect in the classical pair M3 and M15.
Context. Galactic open clusters (OCs) mainly belong to the young stellar population in the Milky Way disk, but are there groups and complexes of OCs that possibly define an additional level in hierarchical star formation? Current compilations are too incomplete to address this question, especially regarding radial velocities (RVs) and metallicities ($[M/H]$). Aims. Here we provide and discuss newly obtained RV and $[M/H]$ data, which will enable us to reinvestigate potential groupings of open clusters and associations. Methods.We extracted additional RVs and $[M/H]$ from the RAdial Velocity Experiment (RAVE) via a cross-match with the Catalogue of Stars in Open Cluster Areas (CSOCA). For the identified OCs in RAVE we derived RV and $[M/H]$ from a cleaned working sample and compared the results with previous findings. Results. Although our RAVE sample does not show the same accuracy as the entire survey, we were able to derive reliable RV for 110 Galactic open clusters. For 37 OCs we publish RV for the first time. Moreover, we determined $[M/H]$ for 81 open clusters, extending the number of OCs with $[M/H]$ by 69.
Globular clusters (GCs) are found ubiquitously in massive galaxies and due to their old ages, they are regarded as fossil records of galaxy evolution. Spectroscopic studies of GC systems are often limited to the outskirts of galaxies, where GCs stand out against the galaxy background and serve as bright tracers of galaxy assembly. In this work, we use the capabilities of the Multi Unit Explorer Spectrograph (MUSE) to extract a spectroscopic sample of 722 GCs in the inner regions ($lesssim 3 R_text{eff}$) of 32 galaxies in the Fornax cluster. These galaxies were observed as part of the Fornax 3D project, a MUSE survey that targets early and late-type galaxies within the virial radius of Fornax. After accounting for the galaxy background in the GC spectra, we extracted line-of-sight velocities and determined metallicities of a sub-sample of 238 GCs. We found signatures of rotation within GC systems, and comparing the GC kinematics and that of the stellar body shows that the GCs trace the spheroid of the galaxies. While the red GCs prove to closely follow the metallicity profile of the host galaxy, the blue GCs show a large spread of metallicities but they are generally more metal-poor than the host.
The relaxation time at the half-mass radius of Galactic globular clusters (GGCs) is typically within a few Gyr. Hence, the majority of GGCs are expected to be well relaxed systems, given their age is around 12-13 Gyr. So any initial radial segregatio n between stars of the same initial mass on the main sequence (MS), in particular, the progenitors of the present day sub-giant and red-giant branch (SGB, RGB) stars should already have dissipated. However, a body of evidence contradicting to these expectations has been accumulated to date. The paradox could be solved by taking into account the effect of stellar collisions. They occur at particularly high rate in collapsing nuclei of GGCs and seem to be mainly responsible for unrelaxed central regions and the radial segregation observed. We draw attention that actually observed collisional blue stragglers should be less numerous than their lower-mass counterparts formed and accumulated at and below the present day MS turnoff. The effect of this is that MS/SGB/RGB stars of a given luminosity are not of the same mass but fall in a range of mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا