ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared Sources in the Small Magellanic Cloud: First Results

70   0   0.0 ( 0 )
 نشر من قبل Joshua Simon
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Joshua D. Simon




اسأل ChatGPT حول البحث

We have imaged the entire Small Magellanic Cloud (SMC), one of the two nearest star-forming dwarf galaxies, in all seven IRAC and MIPS bands. The low mass and low metallicity (1/6 solar) of the SMC make it the best local analog for primitive galaxies at high redshift. By studying the properties of dust and star formation in the SMC at high resolution, we can gain understanding of similar distant galaxies that can only be observed in much less detail. In this contribution, we present a preliminary analysis of the properties of point sources detected in the Spitzer Survey of the Small Magellanic Cloud (S^3MC). We find ~400,000 unresolved or marginally resolved sources in our IRAC images, and our MIPS 24 micron mosaic contains ~17,000 point sources. Source counts decline rapidly at the longer MIPS wavelengths. We use color-color and color-magnitude diagrams to investigate the nature of these objects, cross-correlate their positions with those of known sources at other wavelengths, and show examples of how these data can be used to identify interesting classes of objects such as carbon stars and young stellar objects. For additional examples of some of the questions that can be studied with these data, please see the accompanying contributions by the other members of our team. The mosaic images and point source catalogs we have made have been released to the public on our website (http://celestial.berkeley.edu/spitzer).



قيم البحث

اقرأ أيضاً

We used Spitzers Infrared Spectrograph (IRS) to observe stars in the Small Magellanic Cloud (SMC) selected from the Midcourse Space Experiment (MSX) Point Source Catalog. We concentrate on the dust properties of oxygen-rich evolved stars, which show less alumina than Galactic stars. This difference may arise from the SMCs lower metallicity, but it could be a selection effect: the SMC sample includes more stars which are brighter and thus more massive. The distribution of SMC stars along the silicate sequence looks more like that of Galactic red supergiants than asymptotic giant branch stars (AGBs). While many are definitively AGBs, several SMC stars show evidence of hot bottom burning. Other sources show mixed chemistry (oxygen-rich and carbon-rich features), including supergiants with PAH emission. MSX SMC 134 may be the first confirmed silicate/carbon star in the SMC, and MSX SMC 049 is a post-AGB candidate. MSX SMC 145, previously a candidate OH/IR star, is actually an AGB star with a background galaxy at z=0.16 along the same line-of-sight. We consider the overall characteristics of all the {em MSX} sources, the most infrared-bright objects in the SMC, in light of {em Spitzer}s higher sensitivity and resolution, and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the James Webb Space Telescope (JWST). Color-color diagrams using the IRS spectra and JWST mid-infrared filters show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different YSO classes.
The Magellanic clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust.W e have searched the Spitzer Space Telescope data archive for all Infrared Spectrograph (IRS) staring-mode observations of the Small Magellanic Cloud (SMC) and found that 209 Infrared Array Camera (IRAC) point sources within the footprint of the Surveying the Agents of Galaxy Evolution in the Small Magellanic Cloud (SAGE-SMC) Spitzer Legacy programme were targeted, within a total of 311 staring mode observations. We classify these point sources using a decision tree method of object classification, based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information. We find 58 asymptotic giant branch (AGB) stars, 51 young stellar objects (YSOs), 4 post-AGB objects, 22 Red Supergiants (RSGs), 27 stars (of which 23 are dusty OB stars), 24 planetary nebulae (PNe), 10Wolf-Rayet (WR) stars, 3 Hii regions, 3 R Coronae Borealis (R CrB) stars, 1 Blue Supergiant and 6 other objects, including 2 foreground AGB stars. We use these classifications to evaluate the success of photometric classification methods reported in the literature.
We have observed a sample of 36 objects in the Small Magellanic Cloud (SMC) with the Infrared Spectrometer on the Spitzer Space Telescope. Nineteen of these sources are carbon stars. An examination of the near- and mid-infrared photometry shows that the carbon-rich and oxygen-rich dust sources follow two easily separated sequences. A comparison of the spectra of the 19 carbon stars in the SMC to spectra from the Infrared Space Observatory (ISO) of carbon stars in the Galaxy reveals significant differences. The absorption bands at 7.5 um and 13.7 um due to C2H2 are stronger in the SMC sample, and the SiC dust emission feature at 11.3 um is weaker. Our measurements of the MgS dust emission feature at 26-30 um are less conclusive, but this feature appears to be weaker in the SMC sample as well. All of these results are consistent with the lower metallicity in the SMC. The lower abundance of SiC grains in the SMC may result in less efficient carbon-rich dust production, which could explain the excess C2H2 gas seen in the spectra. The sources in the SMC with the strongest SiC dust emission tend to have redder infrared colors than the other sources in the sample, which implies more amorphous carbon, and they also tend to show stronger MgS dust emission. The weakest SiC emission features tend to be shifted to the blue; these spectra may arise from low-density shells with large SiC grains.
141 - Yoshifusa Ita 2018
A very long term near-infrared variable star survey towards the Large and Small Magellanic Clouds was carried out using the 1.4m InfraRed Survey Facility at the South African Astronomical Observatory. This project was initiated in December 2000 in th e LMC, and in July 2001 in the SMC. Since then an area of 3 square degrees along the bar in the LMC and an area of 1 square degree in the central part of the SMC have been repeatedly observed. This survey is ongoing, but results obtained with data taken until December 2017 are reported in this paper. Over more than 15 years we have observed the two survey areas more than one hundred times. This is the first survey that provides near-infrared time-series data with such a long time baseline and on such a large scale. This paper describes the observations in the SMC and publishes a point source photometric catalogue, a variable source catalogue, and time-series data.
We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared proper ties. The photometric catalog consists of stars with infrared counterparts in the Spitzer, SAGE-SMC survey database, for which we present uniform photometry from 0.3-24 um in the UBVIJHKs+IRAC+MIPS24 bands. We compare the color magnitude diagrams and color-color diagrams to those of the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 um are a few very luminous hypergiants, 4 B-type stars with peculiar, flat spectral energy distributions, and all 3 known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in the SMC, respectively, when compared to the LMC, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A & F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا