ترغب بنشر مسار تعليمي؟ اضغط هنا

Mid-infrared spectroscopy of carbon stars in the Small Magellanic Cloud

109   0   0.0 ( 0 )
 نشر من قبل G. C. Sloan
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have observed a sample of 36 objects in the Small Magellanic Cloud (SMC) with the Infrared Spectrometer on the Spitzer Space Telescope. Nineteen of these sources are carbon stars. An examination of the near- and mid-infrared photometry shows that the carbon-rich and oxygen-rich dust sources follow two easily separated sequences. A comparison of the spectra of the 19 carbon stars in the SMC to spectra from the Infrared Space Observatory (ISO) of carbon stars in the Galaxy reveals significant differences. The absorption bands at 7.5 um and 13.7 um due to C2H2 are stronger in the SMC sample, and the SiC dust emission feature at 11.3 um is weaker. Our measurements of the MgS dust emission feature at 26-30 um are less conclusive, but this feature appears to be weaker in the SMC sample as well. All of these results are consistent with the lower metallicity in the SMC. The lower abundance of SiC grains in the SMC may result in less efficient carbon-rich dust production, which could explain the excess C2H2 gas seen in the spectra. The sources in the SMC with the strongest SiC dust emission tend to have redder infrared colors than the other sources in the sample, which implies more amorphous carbon, and they also tend to show stronger MgS dust emission. The weakest SiC emission features tend to be shifted to the blue; these spectra may arise from low-density shells with large SiC grains.



قيم البحث

اقرأ أيضاً

The Optical Gravitational Lensing Experiment identified over 1,800 carbon-rich Mira and semi-regular variables in the Small Magellanic Cloud. Multi-epoch infrared photometry reveals that the semi-regulars and Miras follow different sequences in color -color space when using colors sensitive to molecular absorption bands. The dustiest Miras have the strongest pulsation amplitudes and longest periods. Efforts to determine bolometric magnitudes reveal possible systematic errors with published bolometric corrections.
We employ newly computed grids of spectra reprocessed by dust for estimating the total dust production rate (DPR) of carbon stars in the Small Magellanic Cloud (SMC). For the first time, the grids of spectra are computed as a function of the main ste llar parameters, i.e. mass-loss rate, luminosity, effective temperature, current stellar mass and element abundances at the photosphere, following a consistent, physically grounded scheme of dust growth coupled with stationary wind outflow. The model accounts for the dust growth of various dust species formed in the circumstellar envelopes of carbon stars, such as carbon dust, silicon carbide and metallic iron. In particular, we employ some selected combinations of optical constants and grain sizes for carbon dust which have been shown to reproduce simultaneously the most relevant color-color diagrams in the SMC. By employing our grids of models, we fit the spectral energy distributions of $approx$3100 carbon stars in the SMC, consistently deriving some important dust and stellar properties, i.e. luminosities, mass-loss rates, gas-to-dust ratios, expansion velocities and dust chemistry. We discuss these properties and we compare some of them with observations in the Galaxy and LMC. We compute the DPR of carbon stars in the SMC, finding that the estimates provided by our method can be significantly different, between a factor $approx2-5$, than the ones available in the literature. Our grids of models, including the spectra and other relevant dust and stellar quantities, are publicly available at http://starkey.astro.unipd.it/web/guest/dustymodels
We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared proper ties. The photometric catalog consists of stars with infrared counterparts in the Spitzer, SAGE-SMC survey database, for which we present uniform photometry from 0.3-24 um in the UBVIJHKs+IRAC+MIPS24 bands. We compare the color magnitude diagrams and color-color diagrams to those of the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 um are a few very luminous hypergiants, 4 B-type stars with peculiar, flat spectral energy distributions, and all 3 known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in the SMC, respectively, when compared to the LMC, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A & F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.
We observed a sample of evolved stars in the Large and Small Magellanic Clouds (LMC and SMC) with the Infrared Spectrograph on the Spitzer Space Telescope. Comparing samples from the SMC, LMC, and the Galaxy reveals that the dust-production rate depe nds on metallicity for oxygen-rich stars, but carbon stars with similar pulsation properties produce similar quantities of dust, regardless of their initial metallicity. Other properties of the oxygen-rich stars also depend on metallicity. As the metallicity decreases, the fraction of naked (i.e. dust-free) stars increases, and among the naked stars, the strength of the 8 um absorption band from SiO decreases. Our sample includes several massive stars in the LMC with long pulsation periods which produce significant amounts of dust, probably because they are young and relatively metal rich. Little alumina dust is seen in circumstellar shells in the SMC and LMC, unlike in Galactic samples. Three oxygen-rich sources also show emission from magnesium-rich crystalline silicates. Many also show an emission feature at 14 um. The one S star in our sample shows a newly detected emission feature centered at 13.5 um. At lower metallicity, carbon stars with similar amounts of amorphous carbon in their shells have stronger absorption from molecular acetylene (C_2H_2) and weaker emission from SiC and MgS dust, as discovered in previous studies.
Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ~40 km/s from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be alien stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا