ﻻ يوجد ملخص باللغة العربية
We present a direct comparison of a chemical/physical model to multitransitional observations of C18O and 13CO towards the Barnard 68 pre-stellar core. These observations provide a sensitive test for models of low UV field photodissociation regions and offer the best constraint on the gas temperature of a pre-stellar core. We find that the gas temperature of this object is surprisingly low (~7-8 K), and significantly below the dust temperature, in the outer layers (Av < 5 mag) that are traced by C18O and 13CO emission. As shown previously, the inner layers (Av > 5 mag) exhibit significant freeze-out of CO onto grain surfaces. Because the dust and gas are not fully coupled, depletion of key coolants in the densest layers raises the core (gas) temperature, but only by ~1 K. The gas temperature in layers not traced by C18O and 13CO emission can be probed by NH3 emission, with a previously estimated temperature of ~10-11 K. To reach these temperatures in the inner core requires an order of magnitude reduction in the gas to dust coupling rate. This potentially argues for a lack of small grains in the densest gas, presumably due to grain coagulation.
The magnetic field structure, kinematical stability, and evolutionary status of the starless dense core Barnard 68 (B68) are revealed based on the near-infrared polarimetric observations of background stars, measuring the dichroically polarized light
The presence of H2D+ in dense cloud cores underlies ion-molecule reactions that strongly enhance the deuterium fractionation of many molecular species. We determine the H2D+ abundance in one starless core, Barnard 68, that has a particularly well est
High levels of deuterium fraction in N$_2$H$^+$ are observed in some pre-stellar cores. Single-zone chemical models find that the timescale required to reach observed values ($D_{rm frac}^{{rm N}_2{rm H}^+} equiv {rm N}_2{rm D}^+/{rm N}_2{rm H}^+ gtr
We present the results of a mid-infrared (7 micron) imaging survey of a sample of 24 starless dense cores carried out at an angular resolution of 6 arcsec with the ISOCAM camera aboard the Infrared Space Observatory (ISO). The targeted cores are beli
We present new results on CO depletion in a sample of nearby pre-stellar cores, based on observations of the millimeter C17O and C18O lines and the 1.3 mm dust emission with the IRAM 30m telescope. In most cases, the distribution of CO is much flatte