ترغب بنشر مسار تعليمي؟ اضغط هنا

A tale of two populations: Rotating Radio Transients and X-ray Dim Isolated Neutron Stars

306   0   0.0 ( 0 )
 نشر من قبل Sergei Popov B.
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S.B. Popov




اسأل ChatGPT حول البحث

We highlight similarities between recently discovered Rotating Radio Transients and X-ray Dim Isolated Neutron Stars. In particular, it is shown that X-ray Dim Isolated Neutron Stars have a birthrate comparable to that of Rotating Radio Transients. On the contrary, magnetars have too low a formation rate to account for the bulk of the radio transient population. The consequences of the recent detection of a thermal X-ray source associated with one of the Rotating Radio Transients on the proposed scenarios for these sources are also discussed.



قيم البحث

اقرأ أيضاً

114 - V.I. Kondratiev 2009
We have carried out a search for radio emission at 820 MHz from six X-ray dim isolated neutron stars with the Robert C. Byrd Green Bank Radio Telescope. No transient or pulsed emission was found using fast folding, fast Fourier transform, and single- pulse searches. The corresponding flux limits are about 0.01 mJy for pulsed emission, depending on the integration time for the particular source and assuming a duty cycle of 2%, and 20 mJy for single dispersed pulses. These are the most sensitive limits to date on radio emission from X-ray dim isolated neutron stars. There is no evidence for isolated radio pulses, as seen in a class of neutron stars known as rotating radio transients. Our results imply that either the radio luminosities of these objects are lower than those of any known radio pulsars, or they could simply be long-period nearby radio pulsars with high magnetic fields beaming away from the Earth. To test the latter possibility, we would need around 40 similar sources to provide a 1 sigma probability of at least one of them beaming toward us. We also give a detailed description of our implementation of the Fast Folding Algorithm.
291 - P. Padovani 2015
We study the Extended Chandra Deep Field South (E-CDFS) Very Large Array sample, which reaches a flux density limit at 1.4 GHz of 32.5 microJy at the field centre and redshift ~ 4, and covers ~ 0.3 deg^2. Number counts are presented for the whole sam ple while the evolutionary properties and luminosity functions are derived for active galactic nuclei (AGN). The faint radio sky contains two totally distinct AGN populations, characterised by very different evolutions, luminosity functions, and Eddington ratios: radio-quiet (RQ)/radiative-mode, and radio-loud/jet-mode AGN. The radio power of RQ AGN evolves ~ (1+z)^2.5, similarly to star-forming galaxies, while the number density of radio-loud ones has a peak at ~ 0.5 and then declines at higher redshifts. The number density of radio-selected RQ AGN is consistent with that of X-ray selected AGN, which shows that we are sampling the same population. The unbiased fraction of radiative-mode RL AGN, derived from our own and previously published data, is a strong function of radio power, decreasing from ~ 0.5 at P_1.4GHz ~ 10^24 W/Hz to ~ 0.04$ at P_1.4GHz ~ 10^22 W/Hz. Thanks to our enlarged sample, which now includes ~ 700 radio sources, we also confirm and strengthen our previous results on the source population of the faint radio sky: star-forming galaxies start to dominate the radio sky only below ~ 0.1 mJy, which is also where radio-quiet AGN overtake radio-loud ones.
We present multi-wavelength follow-up campaigns by the AstroSat-CZTI and GROWTH collaborations to search for an electromagnetic counterpart to the gravitational wave event GW170104. At the time of the GW170104 trigger, the AstroSat CZTI field-of-view covered 50.3% of the sky localization. We do not detect any hard X-ray (>100 keV) signal at this time, and place an upper limit of $approx 4.5 times 10^{-7}~{rm erg~cm}^{-2}{rm~s}^{-1}$ for a 1,s timescale. Separately, the ATLAS survey reported a rapidly fading optical source dubbed ATLAS17aeu in the error circle of GW170104. Our panchromatic investigation of ATLAS17aeu shows that it is the afterglow of an unrelated long, soft GRB~170105A, with only a fortuitous spatial coincidence with GW170104. We then discuss the properties of this transient in the context of standard long GRB afterglow models.
Over the past several years, it has become apparent that some radio pulsars demonstrate significant variability in their single pulse amplitude distributions. The Rotating Radio Transients (RRATs), pulsars discovered through their single, isolated pu lses, are one of the more extreme manifestations of this variability. Nearly 70 of these objects have been found over the past several years in archival and new pulsar surveys. In this review, we describe these searches and their resulting discoveries. We then discuss radio timing algorithms and the spin-down properties of the 19 RRATs with phase-connected solutions. The spin-down parameters fall within the same range as other pulsars, with a tendency towards longer periods and higher magnetic fields. Next we describe follow-up observations at radio wavelengths. These show that there are periodic fluctuations in the pulse detection rates of some RRATs and that RRATs in general have similar spectra to other pulsars. X-ray detection has only been made for one RRAT, J1819-1458; observations have revealed absorption features and a bright X-ray nebula. Finally, we look to future telescopes and the progress that will be made with these in characterising and understanding the Galactic RRAT population.
Supernova fallback disks around neutron stars have been discussed to influence the evolution of the diverse neutron star populations. Slowly rotating neutron stars are most promising to find such disks. Searching for the cold and warm debris of old f allback disks, we carried out Herschel PACS (70 $mu$m, 160 $mu$m) and Spitzer IRAC (3.6 $mu$m, 4.5 $mu$m) observations of eight slowly rotating ($Papprox 3 - 11$ s) nearby ($<1$ kpc) isolated neutron stars. Herschel detected 160 $mu$m emission ($>5sigma$) at locations consistent with the positions of the neutron stars RX J0806.4-4123 and RX J2143.0+0654. No other significant infrared emission was detected from the eight neutron stars. We estimate probabilities of 63%, 33% and 3% that, respectively, none, one, or both Herschel PACS 160 $mu$m detections are unrelated excess sources due to background source confusion or an interstellar cirrus. If the 160 $mu$m emission is indeed related to cold (10 K to 22 K) dust around the neutron stars, this dust is absorbing and re-emitting $sim 10$% to $sim 20$% of the neutron stars X-rays. Such high efficiencies would be at least three orders of magnitude larger than the efficiencies of debris disks around nondegenerate stars. While thin dusty disks around the neutron stars can be excluded as counterparts of the 160 $mu$m emission, dusty asteroid belts constitute a viable option.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا