ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotating Radio Transients

174   0   0.0 ( 0 )
 نشر من قبل Evan Keane PhD
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Over the past several years, it has become apparent that some radio pulsars demonstrate significant variability in their single pulse amplitude distributions. The Rotating Radio Transients (RRATs), pulsars discovered through their single, isolated pulses, are one of the more extreme manifestations of this variability. Nearly 70 of these objects have been found over the past several years in archival and new pulsar surveys. In this review, we describe these searches and their resulting discoveries. We then discuss radio timing algorithms and the spin-down properties of the 19 RRATs with phase-connected solutions. The spin-down parameters fall within the same range as other pulsars, with a tendency towards longer periods and higher magnetic fields. Next we describe follow-up observations at radio wavelengths. These show that there are periodic fluctuations in the pulse detection rates of some RRATs and that RRATs in general have similar spectra to other pulsars. X-ray detection has only been made for one RRAT, J1819-1458; observations have revealed absorption features and a bright X-ray nebula. Finally, we look to future telescopes and the progress that will be made with these in characterising and understanding the Galactic RRAT population.



قيم البحث

اقرأ أيضاً

We describe our studies of the radio and high-energy properties of Rotating Radio Transients (RRATs). We find that the radio pulse intensity distributions are log-normal, with power-law tails evident in two cases. For the three RRATs with coverage ov er a wide range of frequency, the mean spectral index is -1.7pm0.1, roughly in the range of normal pulsars. We do not observe anomalous magnetar-like spectra for any RRATs. Our 94-ks XMM-Newton observation of the high magnetic field RRAT J1819-1458 reveals a blackbody spectrum (kT ~130 eV) with an unusual absorption feature at ~1 keV. We find no evidence for X-ray bursts or other X-ray variability. We performed a correlation analysis of the X-ray photons with radio pulses detected in concurrent observations with the Green Bank, Effelsberg, and Parkes telescopes. We find no evidence for any correlations between radio pulse emission and X-ray photons, perhaps suggesting that sporadicity is not due to variations in magnetospheric particle density but to changes in beaming or coherence.
The rotating radio transients are sporadic pulsars which are difficult to detect through periodicity searches. By using a single-pulse search method, we can discover these sources, measure their periods, and determine timing solutions. Here we introd uce our results on six RRATs based on Parkes and Green Bank Telescope(GBT) observations, along with a comparison of the spin-down properties of RRATs and normal pulsars.
115 - S. Burke-Spolaor 2012
Six years ago, the discovery of Rotating Radio Transients (RRATs) marked what appeared to be a new type of sparsely-emitting pulsar. Since 2006, more than 70 of these objects have been discovered in single-pulse searches of archival and new surveys. With a continual inflow of new information about the RRAT population in the form of new discoveries, multi-frequency follow-ups, coherent timing solutions, and pulse rate statistics, a view is beginning to form of the place in the pulsar population RRATs hold. Here we review the properties of neutron stars discovered through single pulse searches. We first seek to clarify the definition of the term RRAT, emphasising that the RRAT population encompasses several phenomenologies. A large subset of RRATs appear to represent the tail of an extended distribution of pulsar nulling fractions and activity cycles; these objects present several key open questions remaining in this field.
We study the polarization properties of 22 known rotating radio transients (RRATs) with the 64-m Parkes radio telescope and present the Faraday rotation measures (RMs) for the 17 with linearly polarized flux exceeding the off-pulse noise by 3$sigma$. Each RM was estimated using a brute-force search over trial RMs that spanned the maximum measurable range $pm1.18 times 10^5 , mathrm{rad , m^2}$ (in steps of 1 $mathrm{rad , m^2}$), followed by an iterative refinement algorithm. The measured RRAT RMs are in the range |RM| $sim 1$ to $sim 950$ rad m$^{-2}$ with an average linear polarization fraction of $sim 40$ per cent. Individual single pulses are observed to be up to 100 per cent linearly polarized. The RMs of the RRATs and the corresponding inferred average magnetic fields (parallel to the line-of-sight and weighted by the free electron density) are observed to be consistent with the Galactic plane pulsar population. Faraday rotation analyses are typically performed on accumulated pulsar data, for which hundreds to thousands of pulses have been integrated, rather than on individual pulses. Therefore, we verified the iterative refinement algorithm by performing Monte Carlo simulations of artificial single pulses over a wide range of S/N and RM. At and above a S/N of 17 in linearly polarized flux, the iterative refinement recovers the simulated RM value 100 per cent of the time with a typical mean uncertainty of $sim5$ rad m$^{-2}$. The method described and validated here has also been successfully used to determine reliable RMs of several fast radio bursts (FRBs) discovered at Parkes.
718 - N. Rea , V. Testa 2010
We report on the first near-infrared observations obtained for Rotating RAdio Transients (RRATs). Using adaptive optics devices mounted on the ESO Very Large Telescope (VLT), we observed two objects of this class: RRAT J1819-1458, and RRAT J1317-5759 . These observations have been performed in 2006 and 2008, in the J, H and Ks bands. We found no candidate infrared counterpart to RRAT J1317-5759, down to a limiting magnitude of Ks ~ 21. On the other hand, we found a possible candidate counterpart for RRAT J1819-1458, having a magnitude of Ks=20.96+/-0.10 . In particular, this is the only source within a 1 sigma error circle around the sources accurate X-ray position, although given the crowded field we cannot exclude that this is due to a chance coincidence. The infrared flux of the putative counterpart to the highly magnetic RRAT J1819-1458, is higher than expected from a normal radio pulsar, but consistent with that seen from magnetars. We also searched for the near-infrared counterpart to the X-ray diffuse emission recently discovered around RRAT J1819-1458, but we did not detect this component in the near-infrared band. We discuss the luminosity of the putative counterpart to RRAT J1819-1458, in comparison with the near-infrared emission of all isolated neutron stars detected to date in this band (5 pulsars and 7 magnetars).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا