ﻻ يوجد ملخص باللغة العربية
The intense 0.511 MeV gamma-ray line emission from the Galactic Center observed by INTEGRAL requires a large annihilation rate of nonrelativistic positrons. If these positrons are injected at even mildly relativistic energies, higher-energy gamma rays will also be produced. We calculate the gamma-ray spectrum due to inflight annihilation and compare to the observed diffuse Galactic gamma-ray data. Even in a simplified but conservative treatment, we find that the positron injection energies must be $lesssim 3$ MeV, which strongly constrains models for Galactic positron production.
The Galactic positrons, as observed by their annihilation gamma-ray line at 0.511 MeV, are difficult to account for with astrophysical sources. It has been proposed that they are produced instead by dark matter annihilation or decay in the inner Gala
Secondary positrons are produced by spallation of cosmic rays within the interstellar gas. Measurements have been typically expressed in terms of the positron fraction, which exhibits an increase above 10 GeV. Many scenarios have been proposed to exp
Production of antihydrogen atoms by mixing antiprotons with a cold, confined, positron plasma depends critically on parameters such as the plasma density and temperature. We discuss non-destructive measurements, based on a novel, real-time analysis o
Ultra-intense lasers are expected to produce, in near future, relativistic electron-positron plasma droplets. Considering the local photon production rate in complete leading order in quantum electrodynamics (QED), we point out that these droplets are interesting sources of gamma ray flashes
It has been speculated that Lorentz-invariance violation (LIV) might be generated by quantum-gravity (QG) effects. As a consequence, particles may not travel at the universal speed of light. In particular, superluminal extragalactic neutrinos would r