ترغب بنشر مسار تعليمي؟ اضغط هنا

A two-dimensional electrodynamical outer gap model for gamma-ray pulsars: Gamma-ray spectrum

91   0   0.0 ( 0 )
 نشر من قبل Junpei Takata
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A two-dimensional electrodynamical model is used to study particle acceleration in the outer magnetosphere of a pulsar. The charge depletion from the Goldreich-Julian charge density causes a large electric field along the magnetic field lines. The charge particles are accelerated by the electric field and emit $gamma$-rays via the curvature process. Some of the emitted $gamma$-rays may collide with $X$-ray photons to make new pairs, which are accelerated again on the different field lines in the gap and proceed similar processes. We simulate the pair creation cascade in the meridional plane using the pair creation mean-free path, in which the $X$-ray photon number density is proportional to inverse square of radial distance. With the space charge density determined by the pair creation simulation, we solve the electric structure of the outer gap in the meridional plane and calculate the curvature spectrum. Because the two-dimensional model can link both gap width along the magnetic field line and trans-field thickness with the spectral cut-off energy and flux, we can diagnose both the current through the gap and inclination angle between the rotational and magnetic axes. We apply the theory to the Vela pulsar. By comparing the results with the $EGRET$ data, we rule out any cases that have a large particle injection at the outer boundary. We also suggest the inclination angle of $alpha_{inc}geq65^{circ}$. The present model predicts the outer gap starting from near the conventional null charge surface for the Vela pulsar.



قيم البحث

اقرأ أيضاً

56 - J. Takata , C.W. Ngn 2015
We explore a non-stationary outer gap scenario for gamma-ray emission process in pulsar magnetosphere. Electrons/positrons that migrate along the magnetic field line and enter the outer gap from the outer/inner boundaries activate the pair-creation c ascade and high-energy emission process. In our model, the rate of the particle injection at the gap boundaries is key physical quantity to control the gap structure and properties of the gamma-ray spectrum. Our model assumes that the injection rate is time variable and the observed gamma-ray spectrum are superposition of the emissions from different gap structures with different injection rates at the gap boundaries. The calculated spectrum superposed by assuming power law distribution of the particle injection rate can reproduce sub-exponential cut-off feature in the gamma-ray spectrum observed by Fermi-LAT. We fit the phase-averaged spectra for 43 young/middle-age pulsars and 14 millisecond pulsars with the model. Our results imply that (1) a larger particle injection at the gap boundaries is more frequent for the pulsar with a larger spin down power and (2) outer gap with an injection rate much smaller than the Goldreich-Julian value produces observe $>10$GeV emissions. Fermi-LAT gamma-ray pulsars show that (i) the observed gamma-ray spectrum below cut-off energy tends to be softer for the pulsar with a higher spin down rate and (ii) the second peak is more prominent in higher energy bands. Based on the results of the fitting, we describe possible theoretical interpretations for these observational properties. We also briefly discuss Crab-like millisecond pulsars that show phase-aligned radio and gamma-ray pulses.
We analytically investigate the condition for a particle accelerator to be active in the outer magnetosphere of a rotation-powered pulsar. Within the accelerator (or the gap), magnetic-field-aligned electric field accelerates electrons and positrons, which emit copious gamma-rays via curvature process. If one of the gamma-rays emitted by a single pair materializes as a new pair on average, the gap is self-sustained. However, if the neutron-star spin-down rate decreases below a certain limit, the gap becomes no longer self-sustained and the gamma-ray emission ceases. We explicitly compute the multiplicity of cascading pairs and find that the obtained limit corresponds to a modification of previously derived outer-gap death line. In addition to this traditional death line, we find another death line, which becomes important for millisecond pulsars, by separately considering the threshold of photon-photon pair production. Combining these traditional and new death lines, we give predictions on the detectability of gamma-ray pulsars with Fermi and AGILE. An implication on the X-ray observations of heated polar-cap emission is also discussed.
66 - K. Hirotani 2000
We study the gamma-ray emissions from an outer-magnetospheric potential gap around a rotating neutron star. Migratory electrons and positrons are accelerated by the electric field in the gap to radiate copious gamma-rays via curvature process. Some o f these gamma-rays materialize as pairs by colliding with the X-rays in the gap, leading to a pair production cascade. Imposing the closure condition that a single pair produces one pair in the gap on average, we explicitly solve the strength of the acceleration field and demonstrate how the peak energy and the luminosity of the curvature-radiated, GeV photons depend on the strength of the surface blackbody and the power-law emissions. Some predictions on the GeV emission from twelve rotation-powered pulsars are presented. We further demonstrate that the expected pulsed TeV fluxes are consistent with their observational upper limits. An implication of high-energy pulse phase width versus pulsar age, spin, and magnetic moment is discussed.
We develop a model for gamma-ray emission from the outer magnetosphere of pulsars (the outer-gap model). The charge depletion causes a large electric field which accelerates electrons and positrons. We solve the electric field with radiation and pair creation processes self-consistently, and calculate curvature spectrum and Inverse-Compton (IC) spectrum. We apply this theory to PSR B0833-45 (Vela) and B1706-44 for which their surface magnetic fields, observed thermal X-rays are similar to each other. We find that each observed cut-off energies of the gamma-rays are well explained. By inclusion of emission outside the gap, the spectrum is in better agreement with the observations than the spectrum arising only from the inside of the gap. The expected TeV fluxes are much smaller than that observed by CANGAROO group in the direction of B1706-44.
The Large Area Telescope (LAT) on the Fermi satellite is the first gamma-ray instrument to discover pulsars directly via their gamma-ray emission. Roughly one third of the 117 gamma-ray pulsars detected by the LAT in its first three years were discov ered in blind searches of gamma-ray data and most of these are undetectable with current radio telescopes. I review some of the key LAT results and highlight the specific challenges faced in gamma-ray (compared to radio) searches, most of which stem from the long, sparse data sets and the broad, energy-dependent point-spread function (PSF) of the LAT. I discuss some ongoing LAT searches for gamma-ray millisecond pulsars (MSPs) and gamma-ray pulsars around the Galactic Center. Finally, I outline the prospects for future gamma-ray pulsar discoveries as the LAT enters its extended mission phase, including advantages of a possible modification of the LAT observing profile.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا