ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi-LAT searches for gamma-ray pulsars

126   0   0.0 ( 0 )
 نشر من قبل Pablo M. Saz Parkinson
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Large Area Telescope (LAT) on the Fermi satellite is the first gamma-ray instrument to discover pulsars directly via their gamma-ray emission. Roughly one third of the 117 gamma-ray pulsars detected by the LAT in its first three years were discovered in blind searches of gamma-ray data and most of these are undetectable with current radio telescopes. I review some of the key LAT results and highlight the specific challenges faced in gamma-ray (compared to radio) searches, most of which stem from the long, sparse data sets and the broad, energy-dependent point-spread function (PSF) of the LAT. I discuss some ongoing LAT searches for gamma-ray millisecond pulsars (MSPs) and gamma-ray pulsars around the Galactic Center. Finally, I outline the prospects for future gamma-ray pulsar discoveries as the LAT enters its extended mission phase, including advantages of a possible modification of the LAT observing profile.



قيم البحث

اقرأ أيضاً

We report the discovery of eight gamma-ray pulsars in blind frequency searches using the LAT, onboard the Fermi Gamma-ray Space Telescope. Five of the eight pulsars are young (tau_c<100 kyr), energetic (Edot>10^36 erg/s), and located within the Galac tic plane (|b|<3 deg). The remaining three are older, less energetic, and located off the plane. Five pulsars are associated with sources included in the LAT bright gamma-ray source list, but only one, PSR J1413-6205, is clearly associated with an EGRET source. PSR J1023-5746 has the smallest characteristic age (tau_c=4.6 kyr) and is the most energetic (Edot=1.1E37 erg/s) of all gamma-ray pulsars discovered so far in blind searches. PSRs J1957+5033 and J2055+25 have the largest characteristic ages (tau_c~1 Myr) and are the least energetic (Edot~5E33 erg/s) of the newly-discovered pulsars. We present the timing models, light curves, and detailed spectral parameters of the new pulsars. We used recent XMM observations to identify the counterpart of PSR J2055+25 as XMMU J205549.4+253959. In addition, publicly available archival Chandra X-ray data allowed us to identify the likely counterpart of PSR J1023-5746 as a faint, highly absorbed source, CXOU J102302.8-574606. The large X-ray absorption indicates that this could be among the most distant gamma-ray pulsars detected so far. PSR J1023-5746 is positionally coincident with the TeV source HESS J1023-575, located near the young stellar cluster Westerlund 2, while PSR J1954+2836 is coincident with a 4.3 sigma excess reported by Milagro at a median energy of 35 TeV. Deep radio follow-up observations of the eight pulsars resulted in no detections of pulsations and upper limits comparable to the faintest known radio pulsars, indicating that these can be included among the growing population of radio-quiet pulsars in our Galaxy being uncovered by the LAT, and currently numbering more than 20.
The Large Area Telescope (LAT) on Fermi has detected ~150 gamma-ray pulsars, about a third of which were discovered in blind searches of the $gamma$-ray data. Because the angular resolution of the LAT is relatively poor and blind searches for pulsars (especially millisecond pulsars, MSPs) are very sensitive to an error in the position, one must typically scan large numbers of locations. Identifying plausible X-ray counterparts of a putative pulsar drastically reduces the number of trials, thus improving the sensitivity of pulsar blind searches with the LAT. I discuss our ongoing program of Swift, XMM-Newton, and Chandra observations of LAT unassociated sources in the context of our blind searches for gamma-ray pulsars.
The high sensitivity of the Fermi-LAT (Large Area Telescope) offers the first opportunity to study faint and extended GeV sources such as pulsar wind nebulae (PWNe). After one year of observation the LAT detected and identified three pulsar wind nebu lae: the Crab Nebula, Vela-X and the PWN inside MSH 15-52. In the meantime, the list of LAT detected pulsars increased steadily. These pulsars are characterized by high energy loss rates from ~3 times 10^{33} erg s$^{-1}$ to 5 times 10$^{38}$ erg s$^{-1}$ and are therefore likely to power a PWN. This paper summarizes the search for PWNe in the off-pulse windows of 54 LAT-detected pulsars using 16 months of survey observations. Ten sources show significant emission, seven of these likely being of magnetospheric origin. The detection of significant emission in the off-pulse interval offers new constraints on the gamma-ray emitting regions in pulsar magnetospheres. The three other sources with significant emission are the Crab Nebula, Vela-X and a new pulsar wind nebula candidate associated with the LAT pulsar PSR J1023-5746, coincident with the TeV source HESS J1023-575. We further explore the association between the H.E.S.S. and the Fermi source by modeling its spectral energy distribution. Flux upper limits derived for the 44 remaining sources are used to provide new constraints on famous PWNe that have been detected at keV and/or TeV energies.
The Large Area Telescope (LAT) on board the Fermi satellite has detected ~120 pulsars above 100 MeV. While most gamma-ray pulsars have spectra that are well modeled by a power law with an exponential cut-off at around a few GeV, some show significant pulsed high-energy (HE, >10 GeV) emission. I present a study of HE emission from LAT gamma-ray pulsars and discuss prospects for the detection of pulsations at very high energies (VHE, >100 GeV) with ground-based instruments.
Pulsars are rapidly-rotating, highly-magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently, only seven were observed to pulse in gamma rays and these wer e all discovered at other wavelengths. The Fermi Large Area Telescope makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics and the energetics of pulsar wind nebulae and supernova remnants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا