ﻻ يوجد ملخص باللغة العربية
We have applied the infrared surface brightness (ISB) technique to derive distances to 13 Cepheid variables in the LMC which have periods from 3-42 days. The corresponding absolute magnitudes define PL relations in VIWJK bands which agree exceedingly well with the corresponding Milky Way relations obtained from the same technique, and are in significant disagreement with the observed LMC Cepheid PL relations, by OGLE-II and Persson et al., in these bands. Our data uncover a systematic error in the p-factor law which transforms Cepheid radial velocities into pulsational velocities. We correct the p-factor law by requiring that all LMC Cepheids share the same distance. Re-calculating all Milky Way and LMC Cepheid distances with the revised p-factor law, we find that the PL relations from the ISB technique both in LMC and in the Milky Way agree with the OGLE-II and Persson et al. LMC PL relations, supporting the conclusion of no metallicity effect on the slope of the Cepheid PL relation in optical/near infrared bands.
Photometric data for 593 Cepheids in the LMC, measured by Udalski et al. in the OGLE survey, augmented by 92 longer period Cepheids from other sources, are analyzed for the P-C and P-L relations, and for the variations of amplitude, light curve shape
Classical Cepheids (DCEPs) are the most important primary indicators for the extragalactic distance scale. Establishing the dependence on metallicity of their period--luminosity and period--Wesenheit (PL/PW) relations has deep consequences on the est
Using Spitzer archival data from the SAGE (Surveying the Agents of a Galaxys Evolution) program, we derive the Cepheid period-luminosity (P-L) relation at 3.6, 4.5, 5.8 and 8.0 microns for Large Magellanic Cloud (LMC) Cepheids. These P-L relations ca
In this work, we updated the catalog of Galactic Cepheids with $24mumathrm{m}$ photometry by cross-matching the positions of known Galactic Cepheids to the recently released MIPSGAL point source catalog. We have added 36 new sources featuring MIPSGAL
We derive individual distances to six Cepheids in the young populous star cluster NGC1866 in the Large Magellanic Cloud employing the near-IR surface brightness technique. With six stars available at the exact same distance we can directly measure th