ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Period--Luminosity--Metallicity relation of Classical Cepheids

81   0   0.0 ( 0 )
 نشر من قبل Vincenzo Ripepi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Classical Cepheids (DCEPs) are the most important primary indicators for the extragalactic distance scale. Establishing the dependence on metallicity of their period--luminosity and period--Wesenheit (PL/PW) relations has deep consequences on the estimate of the Hubble constant (H$_0$). We aim at investigating the dependence on metal abundance ([Fe/H]) of the PL/PW relations for Galactic DCEPs. We combined proprietary and literature photometric and spectroscopic data, gathering a total sample of 413 Galactic DCEPs (372 fundamental mode -- DCEP_F and 41 first overtone -- DCEP_1O) and constructed new metallicity-dependent PL/PW relations in the near infra-red (NIR) adopting the Astrometric Based Luminosity. We find indications that the slopes of the PL$(K_S)$ and PW$(J,K_S)$ relations for Galactic DCEPs might depend on metallicity when compared to the Large Magellanic Cloud relationships. Therefore, we have used a generalized form of the PL/PW relations to simultaneously take into account the metallicity dependence of the slope and intercept of these relations. We calculated PL/PW relations which, for the first time, explicitly include a metallicity dependence of both the slope and intercept terms. Although the insufficient quality of the available data makes our results not yet conclusive, they are relevant from a methodological point of view. The new relations are linked to the geometric measurement of the distance to the Large Magellanic Cloud and allowed us to estimate a {it Gaia} DR2 parallax zero point offset $Delta varpi$=0.0615$pm$0.004 mas from the dataset of DCEPs used in this work.



قيم البحث

اقرأ أيضاً

301 - M.A.T. Groenewegen 2020
The flux-weighted gravity-luminosity relation (FWGLR) is investigated for a sample of 477 classical Cepheids (CCs), including stars that have been classified in the literature as such but are probably not. The luminosities are taken from the literatu re, based on the fitting of the spectral energy distributions (SEDs) assuming a certain distance and reddening. The flux-weighted gravity (FWG) is taken from gravity and effective temperature determinations in the literature based on high-resolution spectroscopy. There is a very good agreement between the theoretically predicted and observed FWG versus pulsation period relation that could serve in estimating the FWG (and $log g$) in spectroscopic studies with a precision of 0.1~dex. As was known in the literature, the theoretically predicted FWGLR relation for CCs is very tight and is not very sensitive to metallicity (at least for LMC and solar values), rotation rate, and crossing of the instability strip. The observed relation has a slightly different slope and shows more scatter (0.54~dex). This is due both to uncertainties in the distances and to the pulsation phase averaged FWG values. Data from future Gaia data releases should reduce these errors, and then the FWGLR could serve as a powerful tool in Cepheid studies.
Based on updated pulsation models for Classical Cepheids, computed for various assumptions about the metallicity and helium abundance, roughly representative of pulsators in the Small Magellanic Cloud ($Z$=$0.004$ and $Y$=$0.25$), Large Magellanic Cl oud ($Z$=$0.008$ and $Y$=$0.25$), and M31 ($Z$=$0.03$ and $Y$=$0.28$), and self-consistent updated evolutionary predictions, we derived Period-Age and multi-band Period-Age-Color relations that also take into account variations in the Mass-Luminosity relation. These results, combined with those previously derived for Galactic Cepheids, were used to investigate the metallicity effect when using these variables as age indicators. In particular, we found that a variation in the metal abundance affects both the slope and the zero point of the above-mentioned relations. The new relations were applied to a sample of Gaia Early Data Release 3 Classical Cepheids. The retrieved distribution of the individual ages confirms that a brighter Mass-Luminosity relation produces older ages and that First Overtone pulsators are found to be concentrated towards older ages with respect to the Fundamental ones at a fixed Mass-Luminosity relation. Moreover, the inclusion of a metallicity term in the Period-Age and Period-Age-Color relations slightly modifies the predicted ages. In particular, the age distribution of the selected sample of Galactic Cepheids is found to be shifted towards slightly older values, when the F-mode canonical relations are considered, with respect to the case at a fixed solar chemical composition. A marginally opposite dependence can be found in the noncanonical F-mode and canonical FO-mode cases.
133 - K. Genovali , G. Bono (1 2013
We present homogeneous and accurate iron abundances for almost four dozen (47) of Galactic Cepheids using high-spectral resolution (R$sim$40,000) high signal-to-noise ratio (S/N $ge$ 100) optical spectra collected with UVES at VLT. A significant frac tion of the sample (32) is located in the inner disk (RG $le$ 6.9 kpc) and for half of them we provide new iron abundances. Current findings indicate a steady increase in iron abundance when approaching the innermost regions of the thin disk. The metallicity is super-solar and ranges from 0.2 dex for RG $sim$ 6.5 kpc to 0.4 dex for RG $sim$ 5.5 kpc. Moreover, we do not find evidence of correlation between iron abundance and distance from the Galactic plane. We collected similar data available in the literature and ended up with a sample of 420 Cepheids. Current data suggest that the mean metallicity and the metallicity dispersion in the four quadrants of the Galactic disk attain similar values. The first-second quadrants show a more extended metal-poor tail, while the third-fourth quadrants show a more extended metal-rich tail, but the bulk of the sample is at solar iron abundance. Finally, we found a significant difference between the iron abundance of Cepheids located close to the edge of the inner disk ([Fe/H]$sim$0.4) and young stars located either along the Galactic bar or in the nuclear bulge ([Fe/H]$sim$0). Thus suggesting that the above regions have had different chemical enrichment histories. The same outcome applies to the metallicity gradient of the Galactic bulge, since mounting empirical evidence indicates that the mean metallicity increases when moving from the outer to the inner bulge regions.
219 - M.A.T. Groenewegen 2018
We use parallax data from the Gaia second data release (GDR2), combined with parallax data based on Hipparcos and HST data, to derive the period-luminosity-metallicity (PLZ) relation for Galactic classical cepheids (CCs) in the V,K, and Wesenheit WVK bands. An initial sample of 452 CCs are extracted from the literature with spectroscopically derived iron abundances. Reddening values, pulsation periods, and mean magnitudes are taken from the literature. Based on nine CCs with a goodness-of-fit (GOF) statistic <8 and with an accurate non-Gaia parallax, a parallax zero-point offset of -0.049 +- 0.018 mas is derived. Selecting a GOF statistic <8 removes about 40% of the sample most likely related due to binarity. Excluding first overtone and multi-mode cepheids and applying some other criteria reduces the sample to about 200 stars. The derived PL(Z) relations depend strongly on the parallax zero-point offset. The slope of the PL relation is found to be different from the relations in the LMC at the 3 sigma level. Fixing the slope to the value found in the LMC leads to a distance modulus (DM) to the LMC of order 18.7 mag, larger than the canonical distance. The canonical DM of around 18.5 mag would require a parallax zero-point offset of order $-0.1$ mas. Given the strong correlation between zero point, period and metallicity dependence of the PL relation, and the parallax zero-point offset there is no evidence for a metallicity term in the PLZ relation. The GDR2 release does not allow us to improve on the current distance scale based on CCs. The value of and the uncertainty on the parallax zero-point offset leads to uncertainties of order 0.15 mag on the distance scale. The parallax zero-point offset will need to be known at a level of 3 microas or better to have a 0.01 mag or smaller effect on the zero point of the PL relation and the DM to the LMC.
The extragalactic distance scale builds on the Cepheid period-luminosity (PL) relation. In this paper, we want to carry out a strictly differential comparison of the absolute PL relations obeyed by classical Cepheids in the Milky Way (MW), LMC and SM C galaxies. Taking advantage of the substantial metallicity difference among the Cepheid populations in these three galaxies, we want to establish a possible systematic trend of the PL relation absolute zero point as a function of metallicity, and determine the size of such an effect in optical and near-infrared photometric bands. We are using the IRSB Baade-Wesselink type method as calibrated by Storm et al. to determine individual distances to the Cepheids in our samples in MW, LMC and SMC. For our analysis, we use a greatly enhanced sample of Cepheids in the SMC (31 stars) as compared to the small sample (5 stars) available in our previous work. We use the distances to determine absolute Cepheid PL relations in optical and near-infrared bands in each of the three galaxies.} {Our distance analysis of 31 SMC Cepheids with periods from 4-69 days yields tight PL relations in all studied bands, with slopes consistent with the corresponding LMC and MW relations. Adopting the very accurately determined LMC slopes for the optical and near-infrared bands, we determine the zero point offsets between the corresponding absolute PL relations in the 3 galaxies. We find that in all bands the metal-poor SMC Cepheids are intrinsically fainter than their more metal-rich counterparts in the LMC and MW. In the $K$ band the metallicity effect is $-0.23pm0.06$~mag/dex while in the $V,(V-I)$ Wesenheit index it is slightly stronger, $-0.34pm0.06$~mag/dex. We find some evidence that the PL relation zero point-metallicity relation might be nonlinear, becoming steeper for lower metallicities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا