ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of mass loss for highly-irradiated giant planets

60   0   0.0 ( 0 )
 نشر من قبل William Hubbard
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W. B. Hubbard




اسأل ChatGPT حول البحث

We present calculations for the evolution and surviving mass of highly-irradiated extrasolar giant planets (EGPs) at orbital semimajor axes ranging from 0.023 to 0.057 AU using a generalized scaled theory for mass loss, together with new surface-condition grids for hot EGPs and a consistent treatment of tidal truncation. Theoretical estimates for the rate of energy-limited hydrogen escape from giant-planet atmospheres differ by two orders of magnitude, when one holds planetary mass, composition, and irradiation constant. Baraffe et al. (2004, A&A 419, L13-L16) predict the highest rate, based on the theory of Lammer et al. (2003, Astrophys. J. 598, L121-L124). Scaling the theory of Watson et al. (1981, Icarus 48, 150-166) to parameters for a highly-irradiated exoplanet, we find an escape rate ~102 lower than Baraffes. With the scaled Watson theory we find modest mass loss, occurring early in the history of a hot EGP. In this theory, mass loss including the effect of Roche-lobe overflow becomes significant primarily for masses below a Saturn mass, for semimajor axes = 0.023 AU. This contrasts with the Baraffe model, where hot EGPs are claimed to be remnants of much more massive bodies, originally several times Jupiter and still losing substantial mass fractions at present.



قيم البحث

اقرأ أيضاً

141 - Ivan Hubeny , Adam Burrows 2008
We show that a consistent fit to observed secondary eclipse data for several strongly irradiated transiting planets demands a temperature inversion (stratosphere) at altitude. Such a thermal inversion significantly influences the planet/star contrast ratios at the secondary eclipse,their wavelength dependences, and, importantly, the day-night flux contrast during a planetary orbit. The presence of the thermal inversion/stratosphere seems to roughly correlate with the stellar flux at the planet. Such temperature
During the red giant phase, stars loose mass at the highest rate since birth. The mass-loss rate is not fixed, but varies from star-to-star by up to 5%, resulting in variations of the stars luminosity at the tip of the red giant branch (TRGB). Also, most stars, during this phase, engulf part of their planetary system, including their gas giant planets and possibly brown dwarfs. Gas giant planet masses range between 0.1 to 2% of the host star mass. The engulfing of their gas giants planets can modify their luminosity at the TRGB, i.e. the point at which the He-core degeneracy is removed. We show that the increase in mass of the star by the engulfing of the gas giant planets only modifies the luminosity of a star at the TRGB by less than 0.1%, while metallicity can modify the luminosity of a star at the TRGB by up to 0.5%. However, the increase in turbulence of the convective envelope of the star, has a more dramatic effect, on the stars luminosity, which we estimate could be as large as 5%. The effect is always in the direction to increase the turbulence and thus the mixing length which turns into a systematic decrease of the luminosity of the star at the TRGB. We find that the star-to-star variation of the mass-loss rate will dominate the variations in the luminosity of the TRGB with a contribution at the 5% level. If the star-to-star variation is driven by environmental effects, the same effects can potentially create an environmentally-driven mean effect on the luminosity of the tip of the red giant branch of a galaxy. Engulfment of a brown dwarf will have a more dramatic effect. Finally, we touch upon how to infer the frequency, and identify the engulfment, of exoplanets in low-metallicity RGB stars through high resolution spectroscopy as well as how to quantify mass loss rate distributions from the morphology of the horizontal branch.
We present an open access grid of 3930 calculations of externally evaporating protoplanetary discs. This spans a range of disc sizes (1-400AU), disc masses, UV field strengths (10-10$^4$G$_0$) and stellar masses (0.05-1.9M$_odot$). The grid is public ly available for download, and offers a means of cheaply including external photoevaporation in disc evolutionary calculations. It can also be queried using an online tool for quick estimates of instantaneous mass loss rates (e.g for convenient evaluation of real observed systems). The `FRIED grid itself illustrates that for discs around stars $leq0.3$M$_odot$ external photoevaporation is effective down to small radii ($<50$AU) down to UV fields at least as weak as 10G$_0$. At the other end of the scale, in a $10^4$G$_0$ environment photoevaporation is effective down to 1AU even for stellar masses at least as high as 1.9M$_odot$. We also illustrate in which regimes CO survives in the photoevaporative outflow for significant mass loss rates; marking a system a good candidate to detect external photoevaporation in weak-intermediate UV environments through sub-Keplerian rotation. Finally we make illustrative mass loss rate estimates for discs in Taurus based on the Guilloteau et al. (2011) star-disc parameters, finding that around half are expected to have both significant mass loss and retain CO in the photoevaporative outflow.
218 - David S. Spiegel , 2010
There is no universally acknowledged criterion to distinguish brown dwarfs from planets. Numerous studies have used or suggested a definition based on an objects mass, taking the ~13-Jupiter mass (M_J) limit for the ignition of deuterium. Here, we in vestigate various deuterium-burning masses for a range of models. We find that, while 13 M_J is generally a reasonable rule of thumb, the deuterium fusion mass depends on the helium abundance, the initial deuterium abundance, the metallicity of the model, and on what fraction of an objects initial deuterium abundance must combust in order for the object to qualify as having burned deuterium. Even though, for most proto-brown dwarf conditions, 50% of the initial deuterium will burn if the objects mass is ~(13.0 +/- 0.8)M_J, the full range of possibilities is significantly broader. For models ranging from zero-metallicity to more than three times solar metallicity, the deuterium burning mass ranges from ~11.0 M_J (for 3-times solar metallicity, 10% of initial deuterium burned) to ~16.3 M_J (for zero metallicity, 90% of initial deuterium burned).
We present the mass-density relationship (log M - log rho) for objects with masses ranging from planets (M ~ 0.01 M_Jup) through stars (M > 0.08 M_Sun). This relationship shows three distinct regions separated by a change in slope in log M -- log rho plane. In particular, objects with masses in the range 0.3 M_Jup to 60 M_Jup follow a tight linear relationship with no distinguishing feature to separate the low mass end (giant planets) from the high mass end (brown dwarfs). The distinction between giant planets and brown dwarfs thus seems arbitrary. We propose a new definition of giant planets based simply on changes in the slope of the log $M$ versus log rho relationship. By this criterion, objects with masses less than ~ 0.3 M_Jup are low mass planets, either icy or rocky. Giant planets cover the mass range 0.3 M_Jup to 60 M_Jup. Analogous to the stellar main sequence, objects on the upper end of the giant planet sequence (brown dwarfs) can simply be referred to as high mass giant planets, while planets with masses near that of Jupiter can be considered to be low mass giant planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا