ترغب بنشر مسار تعليمي؟ اضغط هنا

A Definition for Giant Planets Based on the Mass-Density Relationship

238   0   0.0 ( 0 )
 نشر من قبل Artie Hatzes
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the mass-density relationship (log M - log rho) for objects with masses ranging from planets (M ~ 0.01 M_Jup) through stars (M > 0.08 M_Sun). This relationship shows three distinct regions separated by a change in slope in log M -- log rho plane. In particular, objects with masses in the range 0.3 M_Jup to 60 M_Jup follow a tight linear relationship with no distinguishing feature to separate the low mass end (giant planets) from the high mass end (brown dwarfs). The distinction between giant planets and brown dwarfs thus seems arbitrary. We propose a new definition of giant planets based simply on changes in the slope of the log $M$ versus log rho relationship. By this criterion, objects with masses less than ~ 0.3 M_Jup are low mass planets, either icy or rocky. Giant planets cover the mass range 0.3 M_Jup to 60 M_Jup. Analogous to the stellar main sequence, objects on the upper end of the giant planet sequence (brown dwarfs) can simply be referred to as high mass giant planets, while planets with masses near that of Jupiter can be considered to be low mass giant planets.



قيم البحث

اقرأ أيضاً

119 - Peter Gao , Xi Zhang 2019
The observed mass-radius relationship of low-mass planets informs our understanding of their composition and evolution. Recent discoveries of low mass, large radii objects (super-puffs) have challenged theories of planet formation and atmospheric los s, as their high inferred gas masses make them vulnerable to runaway accretion and hydrodynamic escape. Here we propose that high altitude photochemical hazes could enhance the observed radii of low-mass planets and explain the nature of super-puffs. We construct model atmospheres in radiative-convective equilibrium and compute rates of atmospheric escape and haze distributions, taking into account haze coagulation, sedimentation, diffusion, and advection by an outflow wind. We develop mass-radius diagrams that include atmospheric lifetimes and haze opacity, which is enhanced by the outflow, such that young (~0.1-1 Gyr), warm (T$_{eq}$ $geq$ 500 K), low mass objects ($M_c$ < 4M$_{rm Earth}$) should experience the most apparent radius enhancement due to hazes, reaching factors of three. This reconciles the densities and ages of the most extreme super-puffs. For Kepler-51b, the inclusion of hazes reduces its inferred gas mass fraction to <10%, similar to that of planets on the large radius side of the sub-Neptune radius gap. This suggests that Kepler-51b may be evolving towards that population, and that some warm sub-Neptunes may have evolved from super-puffs. Hazes also render transmission spectra of super-puffs and sub-Neptunes featureless, consistent with recent measurements. Our hypothesis can be tested by future observations of super-puffs transmission spectra at mid-infrared wavelengths, where we predict that the planet radius will be half of that observed in the near-infrared.
233 - David S. Spiegel , 2010
There is no universally acknowledged criterion to distinguish brown dwarfs from planets. Numerous studies have used or suggested a definition based on an objects mass, taking the ~13-Jupiter mass (M_J) limit for the ignition of deuterium. Here, we in vestigate various deuterium-burning masses for a range of models. We find that, while 13 M_J is generally a reasonable rule of thumb, the deuterium fusion mass depends on the helium abundance, the initial deuterium abundance, the metallicity of the model, and on what fraction of an objects initial deuterium abundance must combust in order for the object to qualify as having burned deuterium. Even though, for most proto-brown dwarf conditions, 50% of the initial deuterium will burn if the objects mass is ~(13.0 +/- 0.8)M_J, the full range of possibilities is significantly broader. For models ranging from zero-metallicity to more than three times solar metallicity, the deuterium burning mass ranges from ~11.0 M_J (for 3-times solar metallicity, 10% of initial deuterium burned) to ~16.3 M_J (for zero metallicity, 90% of initial deuterium burned).
121 - A. Vazan , A. Kovetz , M. Podolak 2013
We model the evolution of planets with various masses and compositions. We investigate the effects of the composition and its depth dependence on the long-term evolution of the planets. The effects of opacity and stellar irradiation are also consider ed. It is shown that the change in radius due to various compositions can be significantly smaller than the change in radius caused by the opacity. Irradiation also affects the planetary contraction but is found to be less important than the opacity effects. We suggest that the mass-radius relationship used for characterization of observed extrasolar planets should be taken with great caution since different physical conditions can result in very different mass-radius relationships.
We present new radial velocity measurements for three low-metallicity solar-like stars observed with the SOPHIE spectrograph and its predecessor ELODIE, both installed at the 193 cm telescope of the Haute-Provence Observatory, allowing the detection and characterization of three new giant extrasolar planets in intermediate periods of 1.7 to 3.7 years. All three stars, HD17674, HD42012 and HD29021 present single giant planetary companions with minimum masses between 0.9 and 2.5 MJup. The range of periods and masses of these companions, along with the distance of their host stars, make them good targets to look for astrometric signals over the lifetime of the new astrometry satellite Gaia. We discuss the preliminary astrometric solutions obtained from the first Gaia data release.
297 - Tristan Guillot 2014
We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular emphasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion o f the atmospheric compositions of the solar system giant planets, we discuss the discovery of oscillations of Jupiter and Saturn, the significant improvements in our understanding of the behavior of material at high pressures and the consequences for interior and evolution models. We place the giant planets in our Solar System in context with the trends seen for exoplanets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا