ﻻ يوجد ملخص باللغة العربية
We have obtained the first high spatial (0.05) and spectral (R~35000) resolution 2 micron spectrum of the T Tau S tight binary system using adaptive optics on the Keck II telescope. We have also obtained the first 3.8 and 4.7 micron images that resolve the three components of the T Tau multiple system, as well as new 1.6 and 2.2 micron images. Together with its very red near-infrared colors, the spectrum of T Tau Sb shows that this T Tauri star is extincted by a roughly constant extinction of Av~15 mag, which is probably the 0.7x0.5 circumbinary structure recently observed in absorption in the ultraviolet. T Tau Sa, which is also observed through this screen and is actively accreting, further possesses a small edge-on disk that is evidenced by warm (390 K), narrow overtone CO rovibrational absorption features in our spectrum. We find that T Tau Sa is most likely an intermediate-mass star surrounded by a semi-transparent 2-3 AU-radius disk whose asymmetries and short Keplerian rotation explain the large photometric variability of the source on relatively short timescales. We also show that molecular hydrogen emission exclusively arises from the gas that surrounds T Tau S and that its spatial and kinematic structure, while providing suggestive evidence for a jet-like structure, is highly complex.
We conducted high-contrast polarimetry observations of T Tau in the H-band, using the HiCIAO instrument mounted on the Subaru Telescope, revealing structures as near as 0.$arcsec$1 from the stars T Tau N and T Tau S. The whole T Tau system is found t
HD50138 is a Herbig B[e] star with a circumstellar disc detected at IR and mm wavelength. Its brightness makes it a good candidate for NIR interferometry observations. We aim to resolve, spatially and spectrally, the continuum and hydrogen emission l
Classical Be stars are hot non-supergiant stars surrounded by a gaseous circumstellar disk that is responsible for the observed infrared (IR) excess and emission lines. The influence of binarity on these phenomena remains controversial. We followed t
We present a spatially resolved, high-spectral resolution (R=12000) K-band temporal monitoring of Rigel using AMBER at the VLTI. Rigel was observed in the Bracket Gamma line and its nearby continuum in 2006-2007, and 2009-2010. These unprecedented ob
We summarize some of the compelling new scientific opportunities for understanding stars and stellar systems that can be enabled by sub-milliarcsec (sub-mas) angular resolution, UV-Optical spectral imaging observations, which can reveal the details o