ﻻ يوجد ملخص باللغة العربية
We summarize some of the compelling new scientific opportunities for understanding stars and stellar systems that can be enabled by sub-milliarcsec (sub-mas) angular resolution, UV-Optical spectral imaging observations, which can reveal the details of the many dynamic processes (e.g., evolving magnetic fields, accretion, convection, shocks, pulsations, winds, and jets) that affect stellar formation, structure, and evolution. These observations can only be provided by long-baseline interferometers or sparse aperture telescopes in space, since the aperture diameters required are in excess of 500 m (a regime in which monolithic or segmented designs are not and will not be feasible) and since they require observations at wavelengths (UV) not accessible from the ground. Such observational capabilities would enable tremendous gains in our understanding of the individual stars and stellar systems that are the building blocks of our Universe and which serve as the hosts for life throughout the Cosmos.
The weak, turbulent magnetic fields that supposedly permeate most of the solar photosphere are difficult to observe, because the Zeeman effect is virtually blind to them. The Hanle effect, acting on the scattering polarization in suitable lines, can
Sunspot observations in chromospheric spectral lines have revealed the existence of short-lived linear bright transients, commonly referred to as penumbral micro-jets (PMJs). Details on the origin and physical nature of PMJs are to large extend still
We present a spatially resolved, high-spectral resolution (R=12000) K-band temporal monitoring of Rigel using AMBER at the VLTI. Rigel was observed in the Bracket Gamma line and its nearby continuum in 2006-2007, and 2009-2010. These unprecedented ob
The recent high angular resolution observations have shown that the transition between a globally symmetrical giant and a source surrounded by a spatially complex environment occurs relatively early, as soon as the external layers of the stars are no
Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 mas remain mostly