ترغب بنشر مسار تعليمي؟ اضغط هنا

Fe XI emission lines in a high resolution extreme ultraviolet spectrum obtained by SERTS

222   0   0.0 ( 0 )
 نشر من قبل Francis Keenan
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New calculations of radiative rates and electron impact excitation cross sections for Fe XI are used to derive emission line intensity ratios involving 3s^23p^4 - 3s^23p^33d transitions in the 180-223 A wavelength range. These ratios are subsequently compared with observations of a solar active region, obtained during the 1995 flight Solar EUV Research Telescope and Spectrograph (SERTS). The version of SERTS flown in 1995 incorporated a multilayer grating that enhanced the instrumental sensitivity for features in the 170 - 225 A wavelength range, observed in second-order between 340 and 450 A. This enhancement led to the detection of many emission lines not seen on previous SERTS flights, which were measured with the highest spectral resolution (0.03 A) ever achieved for spatially resolved active region spectra in this wavelength range. However, even at this high spectral resolution, several of the Fe XI lines are found to be blended, although the sources of the blends are identified in the majority of cases. The most useful Fe XI electron density diagnostic line intensity ratio is I(184.80 A)/I(188.21 A). This ratio involves lines close in wavelength and free from blends, and which varies by a factor of 11.7 between N_e = 10^9 and 10^11 cm^-3, yet shows little temperature sensitivity. An unknown line in the SERTS spectrum at 189.00 A is found to be due to Fe XI, the first time (to our knowledge) this feature has been identified in the solar spectrum. Similarly, there are new identifications of the Fe XI 192.88, 198.56 and 202.42 A features, although the latter two are blended with S VIII/Fe XII and Fe XIII, respectively.



قيم البحث

اقرأ أيضاً

Recent fully relativistic calculations of radiative rates and electron impact excitation cross sections for Fe {sc xiii} are used to generate emission-line ratios involving 3s$^{2}$3p$^{2}$--3s3p$^{3}$ and 3s$^{2}$3p$^{2}$--3s$^{2}$3p3d transitions i n the 170--225 AA and 235--450 AA wavelength ranges covered by the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS). A comparison of these line ratios with SERTS active region observations from rocket flights in 1989 and 1995 reveals generally very good agreement between theory and experiment. Several new Fe {sc xiii} emission features are identified, at wavelengths of 203.79, 259.94, 288.56 and 290.81 AA. However, major discrepancies between theory and observation remain for several Fe {sc xiii} transitions, as previously found by Landi (2002) and others, which cannot be explained by blending. Errors in the adopted atomic data appear to be the most likely explanation, in particular for transitions which have 3s$^{2}$3p3d $^{1}$D$_{2}$ as their upper level. The most useful Fe {sc xiii} electron density diagnostics in the SERTS spectral regions are assessed, in terms of the line pairs involved being (i) apparently free of atomic physics problems and blends, (ii) close in wavelength to reduce the effects of possible errors in the instrumental intensity calibration, and (iii) very sensitive to changes in N$_{e}$ over the range 10$^{8}$--10$^{11}$ cm$^{-3}$. It is concluded that the ratios which best satisfy these conditions are 200.03/202.04 and 203.17/202.04 for the 170--225 AA wavelength region, and 348.18/320.80, 348.18/368.16, 359.64/348.18 and 359.83/368.16 for 235--450 AA.
Fully relativistic calculations of radiative rates and electron impact excitation cross sections for Fe X are used to derive theoretical emission-line ratios involving transitions in the 174-366 A wavelength range. A comparison of these with solar ac tive region observations obtained during the 1989 and 1995 flights of the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS) reveals generally very good agreement between theory and experiment. Several Fe X emission features are detected for the first time in SERTS spectra, while the transition at 195.32 A is identified for the first time (to our knowledge) in an astronomical source. The most useful Fe X electron density diagnostic line ratios are assessed to be 175.27/174.53 and 175.27/177.24, which both involve lines close in wavelength and free from blends, vary by factors of 13 between Ne = 1E8 and 1E13 cm-3, and yet show little temperature sensitivity. Should these lines not be available, then the 257.25/345.74 ratio may be employed to determine Ne, although this requires an accurate evaluation of the instrument intensity calibration over a relatively large wavelength range. However, if the weak 324.73 A line of Fe X is reliably detected, the use of 324.73/345.74 or 257.25/324.73 is recommended over 257.25/345.74.
Theoretical emission-line ratios involving Fe XI transitions in the 257-407 A wavelength range are derived using fully relativistic calculations of radiative rates and electron impact excitation cross sections. These are subsequently compared with bo th long wavelength channel Extreme-Ultraviolet Imaging Spectrometer (EIS) spectra from the Hinode satellite (covering 245-291 A), and first-order observations (235-449 A) obtained by the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS). The 266.39, 266.60 and 276.36 A lines of Fe XI are detected in two EIS spectra, confirming earlier identifications of these features, and 276.36 A is found to provide an electron density diagnostic when ratioed against the 257.55 A transition. Agreement between theory and observation is found to be generally good for the SERTS data sets, with discrepancies normally being due to known line blends, while the 257.55 A feature is detected for the first time in SERTS spectra. The most useful Fe XI electron density diagnostic is found to be the 308.54/352.67 intensity ratio, which varies by a factor of 8.4 between N_e = 10^8 and 10^11 cm^-3, while showing little temperature sensitivity. However, the 349.04/352.67 ratio potentially provides a superior diagnostic, as it involves lines which are closer in wavelength, and varies by a factor of 14.7 between N_e = 10^8 and 10^11 cm^-3. Unfortunately, the 349.04 A line is relatively weak, and also blended with the second-order Fe X 174.52 A feature, unless the first-order instrument response is enhanced.
302 - R. G. Cruddace 2001
We report a high-resolution (R=3000-4000) spectroscopic observation of the DA white dwarf G191-B2B in the extreme ultraviolet band 220-245 A. A low- density ionised He component is clearly present along the line-of-sight, which if completely interste llar implies a He ionisation fraction considerably higher than is typical of the local interstellar medium. However, some of this material may be associated with circumstellar gas, which has been detected by analysis of the C IV absorption line doublet in an HST STIS spectrum. A stellar atmosphere model assuming a uniform element distribution yields a best fit to the data which includes a significant abundance of photospheric He. The 99-percent confidence contour for the fit parameters excludes solutions in which photospheric He is absent, but this result needs to be tested using models allowing abundance gradients.
In the course of investigations of thermal neutron detection based on mixtures of $^{10}$BF$_3$ with other gases, knowledge was required of the photoabsorption cross sections of $^{10}$BF$_3$ for wavelengths between 135 and 205 nm. Large discrepancie s in the values reported in existing literature led to the absolute measurements reported in this communication. The measurements were made at the SURF III synchrotron radiation facility at the National Institute of Standards and Technology. The measured absorption cross sections vary from 10$^{-20}$ cm$^2$ at 135 nm to less than 10$^{-21}$ cm$^2$ in the region from 165 to 205 nm. Three previously unreported absorption features with resolvable structure were found in the regions 135 to 145 nm, 150 to 165 nm and 190 to 205 nm. Quantum mechanical calculations, using the TD-B3LYP/aug-cc-pVDZ variant of time-dependent density functional theory implemented in Gaussian 09, suggest that the observed absorption features arise from symmetry-changing adiabatic transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا