ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Resolution Spectroscopy of G191-B2B in the Extreme Ultraviolet

303   0   0.0 ( 0 )
 نشر من قبل Raymond G. Cruddace
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. G. Cruddace




اسأل ChatGPT حول البحث

We report a high-resolution (R=3000-4000) spectroscopic observation of the DA white dwarf G191-B2B in the extreme ultraviolet band 220-245 A. A low- density ionised He component is clearly present along the line-of-sight, which if completely interstellar implies a He ionisation fraction considerably higher than is typical of the local interstellar medium. However, some of this material may be associated with circumstellar gas, which has been detected by analysis of the C IV absorption line doublet in an HST STIS spectrum. A stellar atmosphere model assuming a uniform element distribution yields a best fit to the data which includes a significant abundance of photospheric He. The 99-percent confidence contour for the fit parameters excludes solutions in which photospheric He is absent, but this result needs to be tested using models allowing abundance gradients.



قيم البحث

اقرأ أيضاً

High-resolution spectra of the hot white dwarf G191-B2B, covering the wavelength region 905-1187A, were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). This data was used in conjunction with existing high-resolution Hubble Space Tele scope STIS observations to evaluate the total HI, DI, OI and NI column densities along the line of sight. Previous determinations of N(DI) based upon GHRS and STIS observations were controversial due to the saturated strength of the DI Lyman-alpha line. In the present analysis the column density of DI has been measured using only the unsaturated Lyman-beta and Lyman-gamma lines observed by FUSE. A careful inspection of possible systematic uncertainties tied to the modeling of the stellar continuum or to the uncertainties in the FUSE instrumental characteristics has been performed. The column densities derived are: log N(DI) = 13.40 +/-0.07, log N(OI) = 14.86 +/-0.07, and log N(NI) = 13.87 +/-0.07 quoted with 2-sigma uncertainties. The measurement of the HI column density by profile fitting of the Lyman-alpha line has been found to be unsecure. If additional weak hot interstellar components are added to the three detected clouds along the line of sight, the HI column density can be reduced quite significantly, even though the signal-to-noise ratio and spectral resolution at Lyman-alpha are excellent. The new estimate of N(HI) toward G191-B2B reads: log N(HI) = 18.18 +/-0.18 (2-sigma uncertainty), so that the average (D/H) ratio on the line of sight is: (D/H) = 1.66 (+0.9/-0.6) *10^-5 (2-sigma uncertainty).
142 - T. Helk , E. Berger , S. Jamnuch 2020
The lack of available table-top extreme ultraviolet (XUV) sources with high enough fluxes and coherence properties have limited the availability of nonlinear XUV and x-ray spectroscopies to free electron lasers (FEL). Here, we demonstrate second harm onic generation (SHG) on a table-top XUV source for the first time by observing SHG at the Ti M2,3-edge with a high harmonic seeded soft x-ray laser (HHG-SXRL) [1,2]. Further, this experiment represents the first SHG experiment in the XUV. First-principles electronic structure calculations are used to confirm the surface specificity and resonant enhancement of the SHG signal. The realization of XUV-SHG on a table-top source with femtosecond temporal resolution opens up tremendous opportunities for the study of element-specific dynamics in multi-component systems where surface, interfacial, and bulk-phase asymmetries play a driving role in smaller-scale labs as opposed to FELs.
Coherent extreme ultraviolet (XUV) radiation produced by table-top high-harmonic generation (HHG) sources provides a wealth of possibilities in research areas ranging from attosecond physics to high resolution coherent imaging. However, it remains ch allenging to fully exploit the coherence of such sources for interferometry and Fourier transform spectroscopy (FTS). This is due to the need for a measurement system that is stable at the level of a wavelength fraction, yet allowing a controlled scanning of time delays. Here we demonstrate XUV interferometry and FTS in the 17-55 nm wavelength range using an ultrastable common-path interferometer suitable for high-intensity laser pulses that drive the HHG process. This approach enables the generation of fully coherent XUV pulse pairs with sub-attosecond timing variation, tunable time delay and a clean Gaussian spatial mode profile. We demonstrate the capabilities of our XUV interferometer by performing spatially resolved FTS on a thin film composed of titanium and silicon nitride.
87 - D. Jahn , T. Rauch , E. Reiff 2006
PG1159-035 is the prototype of the PG1159 spectral class which consists of extremely hot hydrogen-deficient (pre-) white dwarfs. It is also the prototype of the GW Vir variables, which are non-radial g-mode pulsators. The study of PG1159 stars reveal s insight into stellar evolution and nucleosynthesis during AGB and post-AGB phases. We perform a quantitative spectral analysis of PG1159-035 focusing on the abundance determination of trace elements. We have taken high-resolution ultraviolet spectra of PG1159-035 with the Hubble Space Telescope and the Far Ultraviolet Spectroscopic Explorer. They are analysed with non-LTE line blanketed model atmospheres. We confirm the high effective temperature with high precision (Teff=140,000+/-5000 K) and the surface gravity of logg=7. For the first time we assess the abundances of silicon, phosphorus, sulfur, and iron. Silicon is about solar. For phosphorus we find an upper limit of solar abundance. A surprisingly strong depletion of sulfur (2% solar) is discovered. Iron is not detected, suggesting an upper limit of 30% solar. This coincides with the Fe deficiency found in other PG1159 stars. We redetermine the nitrogen abundance and find it to be lower by one dex compared to previous analyses. The sulfur depletion is in contradiction with current models of AGB star intershell nucleosynthesis. The iron deficiency confirms similar results for other PG1159 stars and is explained by the conversion of iron into heavier elements by n-capture in the s-processing environment of the precursor AGB star. However, the extent of the iron depletion is stronger than predicted by evolutionary models. The relatively low nitrogen abundance compared to other pulsating PG1159 stars weakens the role of nitrogen as a distinctive feature of pulsators and non-pulsators in the GW Vir instability strip.
176 - Emily Sistrunk 2014
Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). We demon strate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO2 film with EUV diffraction from the optically excited sample. The VO2 exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separate the two features.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا