ﻻ يوجد ملخص باللغة العربية
Funded by $1.2M in grants and donations, we are now building PROMPT at CTIO. When completed in late 2005, PROMPT will consist of six 0.41-meter diameter Ritchey-Chretien telescopes on rapidly slewing mounts that respond to GRB alerts within seconds, when the afterglow is potentially extremely bright. Each mirror and camera coating is being optimized for a different wavelength range and function, including a NIR imager, two red-optimized imagers, a blue-optimized imager, an UV-optimized imager, and an optical polarimeter. PROMPT will be able to identify high-redshift events by dropout and distinguish these events from the similar signatures of extinction. In this way, PROMPT will act as a distance-finder scope for spectroscopic follow up on the larger 4.1-meter diameter SOAR telescope, which is also located at CTIO. When not chasing GRBs, PROMPT serves broader educational objectives across the state of North Carolina. Enclosure construction and the first two telescopes are now complete and functioning: PROMPT observed Swifts first GRB in December 2004. We upgrade from two to four telescope in February 2005 and from four to six telescopes in mid-2005.
We introduce MAPCAT, a long-term observing program for Monitoring of AGN with Polarimetry at the Calar Alto Telescopes. Multi-spectral-range studies are critical to understand some of the most relevant current problems of high energy astrophysics of
Erroneous submission in violation of copyright, removed by arXiv admin.
Presented paper describes the basic principles and features of the implementation of a robotic network of optical telescopes MASTER, designed to study the prompt (simultaneous with gamma radiation) optical emission of gamma-ray bursts and to perform
Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes use
We present the time-resolved optical emission of GRB 060111B during its prompt phase, measured with the TAROT robotic observatory. This is the first time that the optical emission from a gamma-ray burst has been continuously monitored with a temporal