ترغب بنشر مسار تعليمي؟ اضغط هنا

PROMPT: Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes

119   0   0.0 ( 0 )
 نشر من قبل Daniel Reichart
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Reichart




اسأل ChatGPT حول البحث

Funded by $1.2M in grants and donations, we are now building PROMPT at CTIO. When completed in late 2005, PROMPT will consist of six 0.41-meter diameter Ritchey-Chretien telescopes on rapidly slewing mounts that respond to GRB alerts within seconds, when the afterglow is potentially extremely bright. Each mirror and camera coating is being optimized for a different wavelength range and function, including a NIR imager, two red-optimized imagers, a blue-optimized imager, an UV-optimized imager, and an optical polarimeter. PROMPT will be able to identify high-redshift events by dropout and distinguish these events from the similar signatures of extinction. In this way, PROMPT will act as a distance-finder scope for spectroscopic follow up on the larger 4.1-meter diameter SOAR telescope, which is also located at CTIO. When not chasing GRBs, PROMPT serves broader educational objectives across the state of North Carolina. Enclosure construction and the first two telescopes are now complete and functioning: PROMPT observed Swifts first GRB in December 2004. We upgrade from two to four telescope in February 2005 and from four to six telescopes in mid-2005.



قيم البحث

اقرأ أيضاً

We introduce MAPCAT, a long-term observing program for Monitoring of AGN with Polarimetry at the Calar Alto Telescopes. Multi-spectral-range studies are critical to understand some of the most relevant current problems of high energy astrophysics of blazars such as their high energy emission mechanisms and the location of their gamma-ray emission region through event associations across the spectrum. Adding multi-spectral-range polarimetry allows for even more reliable identification of polarized flares across the spectrum in these kind of objects, as well as for more accurate modeling of their magnetic field. As part of a major international effort to study the long term multi-spectral range polarimetric behavior of blazars, MAPCAT uses -since mid 2007- CAFOS on the 2.2m Telescope at the Calar Alto Observatory (Almeria, Spain) to obtain monthly optical (R-band) photo-polarimetric measurements of a sample of 34 of the brightest gamma-ray, optical, and radio-millimeter blazars accessible from the northern hemisphere.
Presented paper describes the basic principles and features of the implementation of a robotic network of optical telescopes MASTER, designed to study the prompt (simultaneous with gamma radiation) optical emission of gamma-ray bursts and to perform the sky survey to detect unknown objects and transient phenomena. With joint efforts of Sternberg astronomical institute, High altitude astronomical station of the Pulkovo observatory, Ural state university, Irkutsk state university, Blagoveshchensk pedagogical university, the robotic telescopes MASTER II near Kislovodsk, Yekaterinburg, Irkutsk and Blagoveshchensk were installed and tested. The network spread over the longitudes is greater than 6 hours. A further expansion of the network is considered.
Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes use d by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.
We present the time-resolved optical emission of GRB 060111B during its prompt phase, measured with the TAROT robotic observatory. This is the first time that the optical emission from a gamma-ray burst has been continuously monitored with a temporal resolution of a few seconds during the prompt gamma-ray phase. The temporal evolution of the prompt optical emission at the level of several seconds is used to provide a clue to the origin of this emission. The optical emission was found to decay steadily from our first measure, 28s after the trigger, in contrast to the gamma-ray emission, which exhibits strong variability at the same time. This behaviour strongly suggests that the optical emission is due to the reverse shock.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا