Presented paper describes the basic principles and features of the implementation of a robotic network of optical telescopes MASTER, designed to study the prompt (simultaneous with gamma radiation) optical emission of gamma-ray bursts and to perform
the sky survey to detect unknown objects and transient phenomena. With joint efforts of Sternberg astronomical institute, High altitude astronomical station of the Pulkovo observatory, Ural state university, Irkutsk state university, Blagoveshchensk pedagogical university, the robotic telescopes MASTER II near Kislovodsk, Yekaterinburg, Irkutsk and Blagoveshchensk were installed and tested. The network spread over the longitudes is greater than 6 hours. A further expansion of the network is considered.
We present results of optical polarization observations performed with the MASTER robotic net for three types of objects: gamma-ray bursts, supernovae, and blazars. For the Swift gamma-ray bursts GRB100906A, GRB110422A, GRB121011A, polarization obser
vations were obtained during very early stages of optical emission. For GRB100906A it was the first prompt optical polarization observation in the world. Photometry in polarizers is presented for Type Ia Supernova 2012bh during 20 days, starting on March 27, 2012. We find that the linear polarization of SN 2012bh at the early stage of the envelope expansion was less than 3%. Polarization measurements for the blazars OC 457, 3C 454.3, QSO B1215+303, 87GB 165943.2+395846 at single nights are presented. We infer the degree of the linear polarization and polarization angle. The blazars OC 457 and 3C 454.3 were observed during their periods of activity. The results show that MASTER is able to measure substantially polarized light; at the same time it is not suitable for determining weak polarization (less than 5%) of dim objects (fainter than 16$^m$). Polarimetric observations of the optical emission from gamma-ray bursts and supernovae are necessary to investigate the nature of these transient objects.
The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19 - 20mag. Such a survey will make it possible to address a number of fundamental problems: sear
ch for dark energy via the discovery and photometry of supernovas (including SNIa), search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes.
The Advanced LIGO observatory recently reported the first direct detection of gravitational waves predicted by Einstein (1916). We report on the first optical observations of the Gravitational Wave (GW) source GW150914 error region with the Global MA
STER Robotic Net. We detected several optical transients, which proved to be unconnected with the GW event. Our result is consistent with the assumption that gravitational waves were produced by a binary black hole merger. The detection of the event confirmed the main prediction of the population synthesis performed with the Scenario Machine formulated in Lipunov1997b.
Following the reported discovery of the gravitational-wave pulse GW170817/ G298048 by three LIGO/Virgo antennae (Abbott et al., 2017a), the MASTER Global Robotic Net telescopes obtained the first image of the NGC 4993 galaxy after the NS+NS merging.
The optical transient MASTER OTJ130948.10-232253.3/SSS17a was later found, which appears to be a kilonova resulting from a merger of two neutron stars. In this paper we report the independent detection and photometry of the kilonova made in white light and in B, V, and R filters. We note that luminosity of the discovered kilonova NGC 4993 is very close to another possible kilonova proposed early GRB 130603 and GRB 080503.
E. S. Gorbovskoy
,V. M. Lipunov
,V. G. Kornilov
.
(2013)
.
"The MASTER-II Network of Robotic Optical Telescopes. First Results"
.
Maria Pruzhinskaya Victorovna
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا