ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of molecular layers in the atmosphere of the supergiant star mu Cep by interferometry in the K band

64   0   0.0 ( 0 )
 نشر من قبل Guy Perrin
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Infrared interferometry of supergiant and Mira stars has recently been reinterpreted as revealing the presence of deep molecular layers. Empirical models for a photosphere surrounded by a simple molecular layer or envelope have led to a consistent interpretation of previously inconsistent data. The stellar photospheres are found to be smaller than previously understood, and the molecular layer is much higher and denser than predicted by hydrostatic equilibrium. However, the analysis was based on spatial observations with medium-band optical filters, which mixed the visibilities of different spatial structures. This paper reports spatial interferometry with narrow spectral bands, isolating near-continuum and strong molecular features, obtained for the supergiant mu Cep. The measurements confirm strong variation of apparent diameter across the K-band. A layer model shows that a stellar photosphere of angular diameter 14.11+/-0.60 mas is surrounded by a molecular layer of diameter 18.56+/-0.26 mas, with an optical thickness varying from nearly zero at 2.15 microns to >1 at 2.39 microns. Although mu Cep and alpha Ori have a similar spectral type, interferometry shows that they differ in their radiative properties. Comparison with previous broad-band measurements shows the importance of narrow spectral bands. The molecular layer or envelope appears to be a common feature of cool supergiants.



قيم البحث

اقرأ أيضاً

A tomographic method, aiming at probing velocity fields at depth in stellar atmospheres, is applied to the red supergiant star {mu} Cep and to snapshots of 3D radiative-hydrodynamics simulation in order to constrain atmospheric motions and relate them to photometric variability.
Red supergiants are cool massive stars and are the largest and the most luminous stars in the universe. They are characterized by irregular or semi-regular photometric variations, the physics of which is not clearly understood. The paper aims at deri ving the velocity field in the red supergiant star $mu$ Cep and relating it to the photometric variability with the help of the tomographic method. The tomographic method allows to recover the line-of-sight velocity distribution over the stellar disk and within different optical-depth slices. The method is applied to a series of high-resolution spectra of $mu$ Cep, and these results are compared to those obtained from 3D radiative-hydrodynamics CO5BOLD simulations of red supergiants. Fluctuations in the velocity field are compared with photometric and spectroscopic variations, the latter being derived from the TiO band strength and serving (at least partly) a proxy of the variations in effective temperature. The tomographic method reveals a phase shift between the velocity and spectroscopic/photometric variations. This phase shift results in a hysteresis loop in the temperature - velocity plane, with a timescale of a few hundred days, similar to the photometric one. The similarity between the hysteresis loop timescale measured in $mu$ Cep and the timescale of acoustic waves disturbing the convective pattern suggests that such waves play an important role in triggering the hysteresis loops.
Red supergiant stars are surrounded by a gaseous and dusty circumstellar environment created by their mass loss which spreads heavy elements into the interstellar medium. The structure and the dynamics of this envelope are crucial to understand the p rocesses driving the red supergiant mass loss and the shaping of the pre-supernova ejecta. We have observed the emission from the CO $J = 2-1$ line from the red supergiant star $mu$~Cep with the NOEMA interferometer. In the line the synthesized beam was $0.92 times 0.72$~arcsec ($590 times 462$~au at 641~pc). The continuum map shows only the unresolved contribution of the free-free emission of the star chromosphere. The continuum-subtracted channel maps reveal a very inhomogeneous and clumpy circumstellar environment. In particular, we detected a bright CO clump, as bright as the central source in the line, at 1.80~arcsec south-west from the star, in the blue channel maps. After a deprojection of the radial velocity assuming two different constant wind velocities, the observations were modelled using the 3D radiative transfer code textsc{lime} to derive the characteristics of the different structures. We determine that the gaseous clumps observed around $mu$~Cep are responsible for a mass loss rate of $(4.9 pm 1.0) times 10^{-7}~{rm M}_odot,{rm yr}^{-1}$, in addition to a spatially unresolved wind component with an estimated mass-loss rate of $2.0 times 10^{-6}~{rm M}_odot,{rm yr}^{-1}$. Therefore, the clumps have a significant role in $mu$~Ceps mass loss ($ge 25 %$). We cannot exclude that the unresolved central outflow may be made of smaller unresolved clumps.
We present models of the inner region of the circumstellar disk of RY Tau which aim to explain our near-infrared ($K$-band: $2.1,mu$m) interferometric observations while remaining consistent with the optical to near-infrared portions of the spectral energy distribution. Our sub-milliarcsecond resolution CHARA Array observations are supplemented with shorter baseline, archival data from PTI, KI and VLTI/GRAVITY and modeled using an axisymmetric Monte Carlo radiative transfer code. The $K$-band visibilities are well-fit by models incorporating a central star illuminating a disk with an inner edge shaped by dust sublimation at $0.210pm0.005,$au, assuming a viewing geometry adopted from millimeter interferometry ($65^{circ}$ inclined with a disk major axis position angle of $23^{circ}$). This sublimation radius is consistent with that expected of Silicate grains with a maximum size of $0.36-0.40,mu$m contributing to the opacity and is an order of magnitude further from the star than the theoretical magnetospheric truncation radius. The visibilities on the longest baselines probed by CHARA indicate that we lack a clear line-of-sight to the stellar photosphere. Instead, our analysis shows that the central star is occulted by the disk surface layers close to the sublimation rim. While we do not see direct evidence of temporal variability in our multi-epoch CHARA observations, we suggest the aperiodic photometric variability of RY~Tau is likely related temporal and/or azimuthal variations in the structure of the disk surface layers.
59 - F. Comeron , F. Figueras 2020
Very few examples are known of red supergiant runaways, all of them descending from the more massive O-type precursors, but none from the lower mass B-type precursors, although runaway statistics among B-type stars suggest that K-type runaways must b e relatively numerous. We study HD 137071, a star that has been considered so far as a normal K-type red giant. Its parallax measured by Gaia and the derived luminosity suggest that it is actually a supergiant, whereas its derived distance to the galactic plane and its spatial velocity of 54.1 km s$^{-1}$ with respect to the local standard of rest suggest that it is also a runaway star. However, intrinsic limitations in determining the trigonometric parallaxes of cool supergiants, even in the Gaia era, require accurate spectral classifications for confirmation. We reliably classify HD 137071 as a K4II star establishing its membership to the extreme Population I, which is in agreement with the luminosity derived using the Gaia DR2 parallax measurement. Kinematical data from the Gaia DR2 catalog confirm its high spatial velocity and its runaway nature. Combining the spectral classification with astrometric information, a state-of-the-art galactic potential model, and evolutionary models for high-mass stars we trace the motion of HD 137071 back to the proximities of the galactic plane and speculate on which of the two proposed mechanisms for the production of runaway stars may be responsible for the high velocity of HD 137071. The available data favor the formation of HD 137071 in a massive binary system where the more massive companion underwent a supernova explosion about 32 Myr ago.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا