ﻻ يوجد ملخص باللغة العربية
Infrared interferometry of supergiant and Mira stars has recently been reinterpreted as revealing the presence of deep molecular layers. Empirical models for a photosphere surrounded by a simple molecular layer or envelope have led to a consistent interpretation of previously inconsistent data. The stellar photospheres are found to be smaller than previously understood, and the molecular layer is much higher and denser than predicted by hydrostatic equilibrium. However, the analysis was based on spatial observations with medium-band optical filters, which mixed the visibilities of different spatial structures. This paper reports spatial interferometry with narrow spectral bands, isolating near-continuum and strong molecular features, obtained for the supergiant mu Cep. The measurements confirm strong variation of apparent diameter across the K-band. A layer model shows that a stellar photosphere of angular diameter 14.11+/-0.60 mas is surrounded by a molecular layer of diameter 18.56+/-0.26 mas, with an optical thickness varying from nearly zero at 2.15 microns to >1 at 2.39 microns. Although mu Cep and alpha Ori have a similar spectral type, interferometry shows that they differ in their radiative properties. Comparison with previous broad-band measurements shows the importance of narrow spectral bands. The molecular layer or envelope appears to be a common feature of cool supergiants.
A tomographic method, aiming at probing velocity fields at depth in stellar atmospheres, is applied to the red supergiant star {mu} Cep and to snapshots of 3D radiative-hydrodynamics simulation in order to constrain atmospheric motions and relate them to photometric variability.
Red supergiants are cool massive stars and are the largest and the most luminous stars in the universe. They are characterized by irregular or semi-regular photometric variations, the physics of which is not clearly understood. The paper aims at deri
Red supergiant stars are surrounded by a gaseous and dusty circumstellar environment created by their mass loss which spreads heavy elements into the interstellar medium. The structure and the dynamics of this envelope are crucial to understand the p
We present models of the inner region of the circumstellar disk of RY Tau which aim to explain our near-infrared ($K$-band: $2.1,mu$m) interferometric observations while remaining consistent with the optical to near-infrared portions of the spectral
Very few examples are known of red supergiant runaways, all of them descending from the more massive O-type precursors, but none from the lower mass B-type precursors, although runaway statistics among B-type stars suggest that K-type runaways must b