ترغب بنشر مسار تعليمي؟ اضغط هنا

The K supergiant runaway star HD 137071

60   0   0.0 ( 0 )
 نشر من قبل Fernando Comeron
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Very few examples are known of red supergiant runaways, all of them descending from the more massive O-type precursors, but none from the lower mass B-type precursors, although runaway statistics among B-type stars suggest that K-type runaways must be relatively numerous. We study HD 137071, a star that has been considered so far as a normal K-type red giant. Its parallax measured by Gaia and the derived luminosity suggest that it is actually a supergiant, whereas its derived distance to the galactic plane and its spatial velocity of 54.1 km s$^{-1}$ with respect to the local standard of rest suggest that it is also a runaway star. However, intrinsic limitations in determining the trigonometric parallaxes of cool supergiants, even in the Gaia era, require accurate spectral classifications for confirmation. We reliably classify HD 137071 as a K4II star establishing its membership to the extreme Population I, which is in agreement with the luminosity derived using the Gaia DR2 parallax measurement. Kinematical data from the Gaia DR2 catalog confirm its high spatial velocity and its runaway nature. Combining the spectral classification with astrometric information, a state-of-the-art galactic potential model, and evolutionary models for high-mass stars we trace the motion of HD 137071 back to the proximities of the galactic plane and speculate on which of the two proposed mechanisms for the production of runaway stars may be responsible for the high velocity of HD 137071. The available data favor the formation of HD 137071 in a massive binary system where the more massive companion underwent a supernova explosion about 32 Myr ago.



قيم البحث

اقرأ أيضاً

We report the discovery of a square axisymmetric circumstellar nebula around the emission-line star HD 93795 in archival Spitzer Space Telescope 24 micron data. We classify HD 93795 as an B9 Ia star using optical spectra obtained with the Southern Af rican Large Telescope (SALT). A spectral analysis carried out with the stellar atmosphere code FASTWIND indicates that HD 93795 only recently left the main sequence and is evolving redward for the first time. We discuss possible scenarios for the origin of the nebula and suggest that HD 93795 was originally a binary system and that the nebula was formed because of merger of the binary components. We also discuss a discrepancy between distance estimates for HD 93795 based on the Gaia data and the possible membership of this star of the Car OB1 association, and conclude that HD 93795 could be at the same distance as Car OB1.
We recently discovered a yellow supergiant (YSG) in the Small Magellanic Cloud (SMC) with a heliocentric radial velocity of ~300 km/s which is much larger than expected for a star in its location in the SMC. This is the first runaway YSG ever discove red and only the second evolved runaway star discovered in a different galaxy than the Milky Way. We classify the star as G5-8I, and use de-reddened broad-band colors with model atmospheres to determine an effective temperature of 4700+/-250K, consistent with what is expected from its spectral type. The stars luminosity is then L/Lo ~ 4.2+/-0.1, consistent with it being a ~30Myr 9Mo star according to the Geneva evolution models. The star is currently located in the outer portion of the SMCs body, but if the stars transverse peculiar velocity is similar to its peculiar radial velocity, in 10Myr the star would have moved 1.6 degrees across the disk of the SMC, and could easily have been born in one of the SMCs star-forming regions. Based on its large radial velocity, we suggest it originated in a binary system where the primary exploded as a supernovae thus flinging the runaway star out into space. Such stars may provide an important mechanism for the dispersal of heavier elements in galaxies given the large percentage of massive stars that are runaways. In the future we hope to look into additional evolved runaway stars that were discovered as part of our other past surveys.
A significant percentage of OB stars are runaways, so we should expect a similar percentage of their evolved descendants to also be runaways. However, recognizing such stars presents its own set of challenges, as these older, more evolved stars will have drifted further from their birthplace, and thus their velocities might not be obviously peculiar. Several Galactic red supergiants (RSGs) have been described as likely runaways, based upon the existence of bow shocks, including Betelgeuse. Here we announce the discovery of a runaway RSG in M31, based upon a 300 km s$^{-1}$ discrepancy with M31s kinematics. The star is found about 21 (4.6 kpc) from the plane of the disk, but this separation is consistent with its velocity and likely age ($sim$10 Myr). The star, J004330.06+405258.4, is an M2 I, with $M_V=-5.7$, $log L/L_odot$=4.76, an effective temperature of 3700 K, and an inferred mass of 12-15$M_odot$. The star may be a high-mass analog of the hypervelocity stars, given that its peculiar space velocity is probably 400-450 km s$^{-1}$, comparable to the escape speed from M31s disk.
HD 15137 is an intriguing runaway O-type binary system that offers a rare opportunity to explore the mechanism by which it was ejected from the open cluster of its birth. Here we present recent blue optical spectra of HD 15137 and derive a new orbita l solution for the spectroscopic binary and physical parameters of the O star primary. We also present the first XMM-Newton observations of the system. Fits of the EPIC spectra indicate soft, thermal X-ray emission consistent with an isolated O star. Upper limits on the undetected hard X-ray emission place limits on the emission from a proposed compact companion in the system, and we rule out a quiescent neutron star in the propellor regime or a weakly accreting neutron star. An unevolved secondary companion is also not detected in our optical spectra of the binary, and it is difficult to conclude that a gravitational interaction could have ejected this runaway binary with a low mass optical star. HD 15137 may contain an elusive neutron star in the ejector regime or a quiescent black hole with conditions unfavorable for accretion at the time of our observations.
139 - Laura G. Book 2009
We examine the recent star formation associated with four supergiant shells (SGSs) in the Large Magellanic Cloud (LMC): LMC 1, 4, 5, and 6, which have been shown to have simple expanding-shell structures. H II regions and OB associations are used to infer star formation in the last few Myr, while massive young stellar objects (YSOs) reveal the current ongoing star formation. Distributions of ionized, H I, and molecular components of the interstellar gas are compared with the sites of recent and current star formation to determine whether triggering has taken place. We find that a great majority of the current star formation has occurred in gravitationally unstable regions, and that evidence of triggered star formation is prevalent at both large and local scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا