ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematic Study of the Blazar S5 0716+714

261   0   0.0 ( 0 )
 نشر من قبل Uwe Bach
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف U. Bach




اسأل ChatGPT حول البحث

We present the results of a multi-frequency study of the structural evolution of the VLBI jet in the BL Lac object 0716+714 over the last 10 years. We show VLBI images obtained at 5 GHz, 8.4 GHz, 15 GHz and 22 GHz. The milliarcsecond source structure is best described by a one-sided core-dominated jet of ~10 mas length. Embedded jet components move superluminally with speeds ranging from 5 c to 16 c (assuming z=0.3). Such fast superluminal motion is not typical for BL Lac objects, however it is still in the range of jet speeds typically observed in quasars (10 c to 20 c). In 0716+714, younger components, that were ejected more recently, seem to move systematically slower than the older components. This and a systematic position angle variation of the inner (1 mas) portion of the VLBI jet, suggests an at least partly geometric origin of the observed velocity variations. The observed rapid motion and the derived Lorentz factors are discussed with regard to the rapid Intra-Day Variability (IDV) and the gamma-ray observations, from which very high Doppler factors are inferred.



قيم البحث

اقرأ أيضاً

We determined the kinematics at the jet of 0716+714 from a reanalysis of multi-frequency VLBI data (5, 8.4, 15, 22 GHz) obtained during the last 10 years combined with data from the literature. For this intra-day variable blazar, only a lower limit o f its distance is known (z >= 0.3). We find that 0716+714 is a relatively fast superluminal source (with a Lorentz factor of gamma >15), revising earlier results showing much slower motions. We discuss the new findings with emphasis on the interpretation of the observed rapid radio variability.
145 - B. Rani 2013
We present the results of a series of radio, optical, X-ray and gamma-ray observations of the BL Lac object S50716+714 carried out between April 2007 and January 2011. The multi-frequency observations were obtained using several ground and space base d facilities. The intense optical monitoring of the source reveals faster repetitive variations superimposed on a long-term variability trend at a time scale of ~350 days. Episodes of fast variability recur on time scales of ~ 60-70 days. The intense and simultaneous activity at optical and gamma-ray frequencies favors the SSC mechanism for the production of the high-energy emission. Two major low-peaking radio flares were observed during this high optical/gamma-ray activity period. The radio flares are characterized by a rising and a decaying stage and are in agreement with the formation of a shock and its evolution. We found that the evolution of the radio flares requires a geometrical variation in addition to intrinsic variations of the source. Different estimates yield a robust and self-consistent lower limits of delta > 20 and equipartition magnetic field B_eq > 0.36 G. Causality arguments constrain the size of emission region theta < 0.004 mas. We found a significant correlation between flux variations at radio frequencies with those at optical and gamma-rays. The optical/GeV flux variations lead the radio variability by ~65 days. The longer time delays between low-peaking radio outbursts and optical flares imply that optical flares are the precursors of radio ones. An orphan X-ray flare challenges the simple, one-zone emission models, rendering them too simple. Here we also describe the spectral energy distribution modeling of the source from simultaneous data taken through different activity periods.
166 - B. Rani 2013
The GeV observations by Fermi-LAT give us the opportunity to characterize the high-energy emission (100 MeV - 300 GeV) variability properties of the BL Lac object S5 0716+714. In this study, we performed flux and spectral analysis of more than 3 year long (August 2008 to April 2012) Fermi-LAT data of the source. During this period, the source exhibits two different modes of flux variability with characteristic timescales of ~75 and ~140 days, respectively. We also notice that the flux variations are characterized by a weak spectral hardening. The GeV spectrum of the source shows a clear deviation from a simple power law, and is better explained by a broken power law. Similar to other bright Fermi blazars, the break energy does not vary with the source flux during the different activity states. We discuss several possible scenarios to explain the observed spectral break.
267 - B. Rani 2010
The emission from blazars is known to be variable at all wavelengths. The flux variability is often accompanied by spectral changes. Spectral energy distribution (SED) changes must be associated with changes in the spectra of emitting electrons and/o r the physical parameters of the jet. Meaningful modeling of blazar broadband spectra is required to understand the extreme conditions within the emission region. Not only is the broadband SED crucial, but also information about its variability is needed to understand how the highest states of emission occur and how they differ from the low states. This may help in discriminating between models. Here we present the results of our SED modeling of the blazar S5 0716+714 during various phases of its activity. The SEDs are classified into different bins depending on the optical brightness state of the source.
The typical blazar S5 0716$+$714 is very interesting due to its rapid and large amplitude variability and high duty cycle of micro-variability in optical band. We analyze the observations in I, R and V bands obtained with the $1.0m$ telescope at Weih ai observatory of Shandong University from 2011 to 2018. The model of synchrotron radiation from turbulent cells in a jet has been proposed as a mechanism for explaining micro-variability seen in blazar light curves. Parameters such as the sizes of turbulent cells, the enhanced particle densities, and the location of the turbulent cells in the jet can be studied using this model. The model predicts a time lag between variations as observed in different frequency bands. Automatic model fitting method for micro-variability is developed, and the fitting results of our multi-frequency micro-variability observations support the model. The results show that both the amplitude and duration of flares decomposed from the micro-variability light curves confirm to the log-normal distribution. The turbulent cell size is within the range of about 5 to 55 AU, and the time lags of the micro-variability flares between the I-R and R-V bands should be several minutes. The time lags obtained from the turbulence model are consistent with the fitting statistical results, and the time lags of flares are correlated with the time lags of the whole light curve.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا