ترغب بنشر مسار تعليمي؟ اضغط هنا

S5 0716+714 : GeV variability study

160   0   0.0 ( 0 )
 نشر من قبل Bindu Rani Ms.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Rani




اسأل ChatGPT حول البحث

The GeV observations by Fermi-LAT give us the opportunity to characterize the high-energy emission (100 MeV - 300 GeV) variability properties of the BL Lac object S5 0716+714. In this study, we performed flux and spectral analysis of more than 3 year long (August 2008 to April 2012) Fermi-LAT data of the source. During this period, the source exhibits two different modes of flux variability with characteristic timescales of ~75 and ~140 days, respectively. We also notice that the flux variations are characterized by a weak spectral hardening. The GeV spectrum of the source shows a clear deviation from a simple power law, and is better explained by a broken power law. Similar to other bright Fermi blazars, the break energy does not vary with the source flux during the different activity states. We discuss several possible scenarios to explain the observed spectral break.



قيم البحث

اقرأ أيضاً

138 - B. Rani 2013
We present the results of a series of radio, optical, X-ray and gamma-ray observations of the BL Lac object S50716+714 carried out between April 2007 and January 2011. The multi-frequency observations were obtained using several ground and space base d facilities. The intense optical monitoring of the source reveals faster repetitive variations superimposed on a long-term variability trend at a time scale of ~350 days. Episodes of fast variability recur on time scales of ~ 60-70 days. The intense and simultaneous activity at optical and gamma-ray frequencies favors the SSC mechanism for the production of the high-energy emission. Two major low-peaking radio flares were observed during this high optical/gamma-ray activity period. The radio flares are characterized by a rising and a decaying stage and are in agreement with the formation of a shock and its evolution. We found that the evolution of the radio flares requires a geometrical variation in addition to intrinsic variations of the source. Different estimates yield a robust and self-consistent lower limits of delta > 20 and equipartition magnetic field B_eq > 0.36 G. Causality arguments constrain the size of emission region theta < 0.004 mas. We found a significant correlation between flux variations at radio frequencies with those at optical and gamma-rays. The optical/GeV flux variations lead the radio variability by ~65 days. The longer time delays between low-peaking radio outbursts and optical flares imply that optical flares are the precursors of radio ones. An orphan X-ray flare challenges the simple, one-zone emission models, rendering them too simple. Here we also describe the spectral energy distribution modeling of the source from simultaneous data taken through different activity periods.
We report results from a 1 week multi-wavelength campaign to monitor the BL Lac object S5 0716+714 (on December 9-16, 2009). In the radio bands the source shows rapid (~ (0.5-1.5) day) intra-day variability with peak amplitudes of up to ~ 10 %. The v ariability at 2.8 cm leads by about 1 day the variability at 6 cm and 11 cm. This time lag and more rapid variations suggests an intrinsic contribution to the sources intraday variability at 2.8 cm, while at 6 cm and 11 cm interstellar scintillation (ISS) seems to predominate. Large and quasi-sinusoidal variations of ~ 0.8 mag were detected in the V, R and I-bands. The X-ray data (0.2-10 keV) do not reveal significant variability on a 4 day time scale, favoring reprocessed inverse-Compton over synchrotron radiation in this band. The characteristic variability time scales in radio and optical bands are similar. A quasi-periodic variation (QPO) of 0.9 - 1.1 days in the optical data may be present, but if so it is marginal and limited to 2.2 cycles. Cross-correlations between radio and optical are discussed. The lack of a strong radio-optical correlation indicates different physical causes of variability (ISS at long radio wavelengths, source intrinsic origin in the optical), and is consistent with a high jet opacity and a compact synchrotron component peaking at ~= 100 GHz in an ongoing very prominent flux density outburst. For the campaign period, we construct a quasi-simultaneous spectral energy distribution (SED), including gamma-ray data from the FERMI satellite. We obtain lower limits for the relativistic Doppler-boosting of delta >= 12-26, which for a BL,Lac type object, is remarkably high.
The typical blazar S5 0716$+$714 is very interesting due to its rapid and large amplitude variability and high duty cycle of micro-variability in optical band. We analyze the observations in I, R and V bands obtained with the $1.0m$ telescope at Weih ai observatory of Shandong University from 2011 to 2018. The model of synchrotron radiation from turbulent cells in a jet has been proposed as a mechanism for explaining micro-variability seen in blazar light curves. Parameters such as the sizes of turbulent cells, the enhanced particle densities, and the location of the turbulent cells in the jet can be studied using this model. The model predicts a time lag between variations as observed in different frequency bands. Automatic model fitting method for micro-variability is developed, and the fitting results of our multi-frequency micro-variability observations support the model. The results show that both the amplitude and duration of flares decomposed from the micro-variability light curves confirm to the log-normal distribution. The turbulent cell size is within the range of about 5 to 55 AU, and the time lags of the micro-variability flares between the I-R and R-V bands should be several minutes. The time lags obtained from the turbulence model are consistent with the fitting statistical results, and the time lags of flares are correlated with the time lags of the whole light curve.
260 - U. Bach 2004
We present the results of a multi-frequency study of the structural evolution of the VLBI jet in the BL Lac object 0716+714 over the last 10 years. We show VLBI images obtained at 5 GHz, 8.4 GHz, 15 GHz and 22 GHz. The milliarcsecond source structure is best described by a one-sided core-dominated jet of ~10 mas length. Embedded jet components move superluminally with speeds ranging from 5 c to 16 c (assuming z=0.3). Such fast superluminal motion is not typical for BL Lac objects, however it is still in the range of jet speeds typically observed in quasars (10 c to 20 c). In 0716+714, younger components, that were ejected more recently, seem to move systematically slower than the older components. This and a systematic position angle variation of the inner (1 mas) portion of the VLBI jet, suggests an at least partly geometric origin of the observed velocity variations. The observed rapid motion and the derived Lorentz factors are discussed with regard to the rapid Intra-Day Variability (IDV) and the gamma-ray observations, from which very high Doppler factors are inferred.
121 - X. Liu , H.-G. Song , N. Marchili 2012
We aim to search for evidence of annual modulation in the time scales of the BL Lac object S5 0716+714. The intra-day variability (IDV) observations were carried out monthly from 2005 to 2009, with the Urumqi 25m radio telescope at 4.8 GHz. The sourc e has shown prominent IDV as well as long-term flux variations. The IDV time scale does show evidence in favor of an annual modulation, suggesting that the IDV of 0716+714 is dominated by interstellar scintillation. The source underwent a strong outburst phase between mid-2008 and mid-2009; a second intense flare was observed in late 2009, but no correlation between the total flux density and the IDV time scale is found, implying that the flaring state of the source does not have serious implications for the general characteristics of its intra-day variability. However, we find that the inner-jet position angle is changing throughout the years, which could result in an annual modulation noise in the anisotropic ISS model fit. There is also an indication that the lowest IDV amplitudes (rms flux density) correspond to the slowest time scales of IDV, which would be consistent with an ISS origin of the IDV of 0716+714.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا