ﻻ يوجد ملخص باللغة العربية
The EDELWEISS collaboration is searching for WIMP dark matter using natural Ge cryogenic detectors. The whole data set of the first phase of the experiment contains a fiducial exposure of 4.8 kg.day on Ge-73, the naturally present (7.8%), high-spin Ge isotope. The sensitivity of the experiment to the spin-dependent WIMP-nucleon interactions is evaluated using the model-independent framework proposed by Tovey et al.
The EDELWEISS experiment has improved its sensitivity for the direct search for WIMP dark matter. In the recoil energy range relevant for WIMP masses below 10 TeV/c2, no nuclear recoils were observed in the fiducial volume of a heat-and-ionization cr
Four categories of events have been identified in the EDELWEISS-I dark matter experiment using germanium cryogenic detectors measuring simultaneously charge and heat signals. These categories of events are interpreted as electron and nuclear interact
Revealing the nature of dark matter is one of the most interesting tasks in astrophysics. Measuring the distribution of recoil angles is said to be one of the most reliable methods to detect a positive signature of dark matter. We focused on measurem
The ZEPLIN collaboration has recently published its first result presenting a maximum sensitivity of $1.1 times 10^{-6}$ picobarn for a WIMP mass of $approx$ 60 GeV. The analysis is based on a discrimination method using the different time distributi
Recent objections (Phys.Lett. B 637, 156) to the published Zeplin I limit (Astropart. Phys 23, 444) are shown to arise from misunderstandings of the calibration data and procedure, and a misreading of the data in one of the referenced papers.