ﻻ يوجد ملخص باللغة العربية
Revealing the nature of dark matter is one of the most interesting tasks in astrophysics. Measuring the distribution of recoil angles is said to be one of the most reliable methods to detect a positive signature of dark matter. We focused on measurements via spin-dependent interactions, and studied the feasibility with carbon tetrafluoride($rm CF_4$) gas, while taking into account the performance of an existing three-dimensional tracking detector. We consequently found that it is highly possible to detect a positive signature of dark matter via spin-dependent interactions.
We present PandaX-II constraints on candidate WIMP-nucleon effective interactions involving the nucleon or WIMP spin, including, in addition to standard axial spin-dependent (SD) scattering, various couplings among vector and axial currents, magnetic
The EDELWEISS collaboration is searching for WIMP dark matter using natural Ge cryogenic detectors. The whole data set of the first phase of the experiment contains a fiducial exposure of 4.8 kg.day on Ge-73, the naturally present (7.8%), high-spin G
Bubble Chambers provided the dominant particle detection technology in accelerator experiments for several decades, eventually falling into disuse with the advent of other techniques. We report here on the first period of operation of an ultra-clean,
Data from the operation of a bubble chamber filled with 3.5 kg of CF$_{3}$I in a shallow underground site are reported. An analysis of ultrasound signals accompanying bubble nucleations confirms that alpha decays generate a significantly louder acous
Chiral effective field theory (EFT) provides a systematic expansion for the coupling of WIMPs to nucleons at the momentum transfers relevant to direct cold dark matter detection. We derive the currents for spin-dependent WIMP scattering off nuclei at