ترغب بنشر مسار تعليمي؟ اضغط هنا

Surveys of extragalactic sources with Planck

50   0   0.0 ( 0 )
 نشر من قبل Gianfranco de Zotti
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Although the primary goal of ESAs Planck mission is to produce high resolution maps of the temperature and polarization anisotropies of the Cosmic Microwave Background (CMB), its high-sensitivity all-sky surveys of extragalactic sources at 9 frequencies in the range 30--860 GHz will constitute a major aspect of its science products. In particular, Planck surveys will provide key information on several highly interesting radio source populations, such as Flat Spectrum Radio Quasars, BL Lac objects, and, especially, extreme GHz Peaked Spectrum sources, thought to correspond to the very earliest phases of the evolution of radio sources. Above 100 GHz, Planck will provide the first all-sky surveys, that are expected to supply rich samples of highly gravitationally amplified dusty proto-galaxies and large samples of candidate proto-clusters at z~2-3, thus shedding light on the evolution of large scale structure across the cosmic epoch when dark energy should start dominating the cosmic dynamics.



قيم البحث

اقرأ أيضاً

We discuss the main uncertainties affecting estimates of small scale fluctuations due to extragalactic sources in the Planck Surveyor frequency bands. Conservative estimates allow us to confidently conclude that, in the frequency range 100--200 GHz, the contaminating effect of extragalactic sources is well below the expected anisotropy level of the cosmic microwave background (CMB), down to angular scales of at least $simeq 10$. Hence, an accurate subtraction of foreground fluctuations is not critical for the determination of the CMB power spectrum up to multipoles $ell simeq 1000$. In any case, Plancks wide frequency coverage will allow to carefully control foreground contributions. On the other hand, the all sky surveys at 9 frequencies, spanning the range 30--900 GHz, will be unique in providing complete samples comprising from several hundreds to many thousands of extragalactic sources, selected in an essentially unexplored frequency interval. New classes of sources may be revealed in these data.
Continuum spectra covering centimetre to submillimetre wavelengths are presented for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz , are complemented by a set of simultaneous ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The radio spectra peak at high frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Variability can generally be approximated by achromatic variations, while sources with clear signatures of evolving shocks appear to be limited to the strongest outbursts.
Since the IAU (maser-)Symposium 287 in Stellenbosch/South Africa (Jan. 2012), great progress has been achieved in studying extragalactic maser sources. Sensitivity has reached a level allowing for dedicated maser surveys of extragalactic objects. The se included, during the last years, water vapor (H2O), methanol (CH3OH), and formaldehyde (H2CO), while surveys related to hydroxyl (OH), cyanoacetylene (HC3N) and ammonia (NH3) may soon become (again) relevant. Overall, with the upgraded Very Large Array (VLA), the Atacama Large Millimeter/submillimeter Array (ALMA), FAST (Five hundred meter Aperture Synthesis Telescope) and the low frequency arrays APERTIF (APERture Tile in Focus), ASKAP (Australian Square Kilometer Array Pathfinder) and MeerKAT (Meer Karoo Array Telescope), extragalactic maser studies are expected to flourish during the upcoming years. The following article provides a brief sketch of past achievements, ongoing projects and future perspectives.
We estimate the average fractional polarisation at 143, 217 and 353 GHz of a sample of 4697 extragalactic dusty sources by applying stacking technique. The sample is selected from the second version of the Planck Catalogue of Compact Sources at 857 G Hz, avoiding the region inside the Planck Galactic mask (fsky ~ 60 per cent). We recover values for the mean fractional polarisation at 217 and 353 GHz of (3.10 pm 0.75) per cent and (3.65 pm 0.66) per cent, respectively, whereas at 143 GHz we give a tentative value of (3.52 pm 2.48) per cent. We discuss the possible origin of the measured polarisation, comparing our new estimates with those previously obtained from a sample of radio sources. We test different distribution functions and we conclude that the fractional polarisation of dusty sources is well described by a log-normal distribution, as determined in the radio band studies. For this distribution we estimate {mu}_{217GHz} = 0.3 pm 0.5 (that would correspond to a median fractional polarisation of {Pi}_{med} = (1.3 pm 0.7) per cent) and {mu}_{353GHz} = 0.7 pm 0.4 ({Pi}_{med} = (2.0 pm 0.8) per cent), {sigma}_{217GHz} = 1.3 pm 0.2 and {sigma}_{353GHz} = 1.1 pm 0.2. With these values we estimate the source number counts in polarisation and the contribution given by these sources to the CMB B-mode angular power spectrum at 217, 353, 600 and 800 GHz. We conclude that extragalactic dusty sources might be an important contaminant for the primordial B-mode at frequencies > 217 GHz.
The data reported in Plancks Early Release Compact Source Catalogue (ERCSC) are exploited to measure the number counts (dN/dS) of extragalactic radio sources at 30, 44, 70, 100, 143 and 217 GHz. Due to the full-sky nature of the catalogue, this measu rement extends to the rarest and brightest sources in the sky. At lower frequencies (30, 44, and 70 GHz) our counts are in very good agreement with estimates based on WMAP data, being somewhat deeper at 30 and 70 GHz, and somewhat shallower at 44 GHz. Plancks source counts at 143 and 217 GHz join smoothly with the fainter ones provided by the SPT and ACT surveys over small fractions of the sky. An analysis of source spectra, exploiting Plancks uniquely broad spectral coverage, finds clear evidence of a steepening of the mean spectral index above about 70 GHz. This implies that, at these frequencies, the contamination of the CMB power spectrum by radio sources below the detection limit is significantly lower than previously estimated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا