ﻻ يوجد ملخص باللغة العربية
We discuss the main uncertainties affecting estimates of small scale fluctuations due to extragalactic sources in the Planck Surveyor frequency bands. Conservative estimates allow us to confidently conclude that, in the frequency range 100--200 GHz, the contaminating effect of extragalactic sources is well below the expected anisotropy level of the cosmic microwave background (CMB), down to angular scales of at least $simeq 10$. Hence, an accurate subtraction of foreground fluctuations is not critical for the determination of the CMB power spectrum up to multipoles $ell simeq 1000$. In any case, Plancks wide frequency coverage will allow to carefully control foreground contributions. On the other hand, the all sky surveys at 9 frequencies, spanning the range 30--900 GHz, will be unique in providing complete samples comprising from several hundreds to many thousands of extragalactic sources, selected in an essentially unexplored frequency interval. New classes of sources may be revealed in these data.
We present a sample of 1,483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky su
The LWA will be well suited to address many important questions about the physics and astrophysics of extragalactic synchrotron sources. Good low-frequency data will enable major steps forward in our understanding of radio galaxy physics, of the plas
Continuum spectra covering centimetre to submillimetre wavelengths are presented for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz
(abridged for arXiv) We make use of the Planck all-sky survey to derive number counts and spectral indices of extragalactic sources -- infrared and radio sources -- from the Planck Early Catalogue (ERCSC) at 100 to 857GHz. Our sample contains, after
Spectral variability of radio sources encodes information about the conditions of intervening media, source structure, and emission processes. With new low-frequency radio interferometers observing over wide fractional bandwidths, studies of spectral