ﻻ يوجد ملخص باللغة العربية
We have carried out a new determination of abundances in the very metal-poor CH/CN strong stars CS 29497-34 and CS 22948-27, using high-resolution spectra obtained with the HARPS spectrograph at the 3.6m telescope of ESO, La Silla, that covers the range 400 - 690 nm at a resolution of R = 100,000. Both stars are found to be long period binaries. It is confirmed that the abundance patterns show an enhancement of all the alpha-elements (like Mg, Ca), of the proton capture elements (like Na and Al) and a strong enrichment in r and s process elements, where the s-enrichment is probably due to a mass transfer episode from a companion in its AGB phase. The possible origins of the abundance pattern and especially of the strong enhancement of both s and r elements are discussed.
High-resolution spectra obtained with three ground-based facilities and the Hubble Space Telescope (HST) have been combined to produce a new abundance analysis of CS 22892-052, an extremely metal-poor giant with large relative enhancements of neutron
We aim to determine the distributions of molecular SiS and CS in the circumstellar envelopes of oxygen-rich asymptotic giant branch stars and how these distributions differ between stars that lose mass at different rates. In this study we analyse ALM
The s-enhanced and very metal-poor star CS 30322-023 shows a puzzling abundance pattern of the neutron-capture elements, i.e. several neutron-capture elements such as Ba, Pb etc. show enhancement, but other neutron-capture elements such as Sr, Eu etc
Motivated by recent interest in their applications, we report a systematic study of Cs atomic properties calculated by a high-precision relativistic all-order method. Excitation energies, reduced matrix elements, transition rates, and lifetimes are d
New data from BESIII and LHCb show the existence of resonances with strangeness filling multiplets of the broken SU(3)_f symmetry, with the pattern predicted by the quark model. This is the case of the newly discovered Z_{cs} (3985) and Z_{cs}(4003),