ﻻ يوجد ملخص باللغة العربية
High-resolution spectra obtained with three ground-based facilities and the Hubble Space Telescope (HST) have been combined to produce a new abundance analysis of CS 22892-052, an extremely metal-poor giant with large relative enhancements of neutron-capture elements. A revised model stellar atmosphere has been derived with the aid of a large number of Fe-peak transitions, including both neutral and ionized species of six elements.Several elements, including Mo, Lu, Au, Pt and Pb, have been detected for the first time in CS 22892-052, and significant upper limits have been placed on the abundances of Ga, Ge, Cd, Sn, and U in this star. In total, abundance measurements or upper limits have been determined for 57 elements, far more than previously possible. New Be and Li detections in CS 22892-052 indicate that the abundances of both these elements are significantly depleted compared to unevolved main-sequence turnoff stars of similar metallicity. Abundance comparisons show an excellent agreement between the heaviest n-capture elements (Z >= 56) and scaled solar system r-process abundances, confirming earlier results for CS 22892-052 and other metal-poor stars. New theoretical r-process calculations also show good agreement with CS 22892-052 abundances as well as the solar r-process abundance components.The abundances of lighter elements (40<= Z <= 50), however, deviate from the same scaled abundance curves that match the heavier elements, suggesting different synthesis conditions or sites for the low-mass and high-mass ends of the abundance distribution. The detection of Th and the upper limit on the U abundance together imply a lower limit of 10.4 Gyr on the age of CS 22892-052, quite consistent with the Th/Eu age estimate of 12.8 +/- ~= 3 Gyr. An average of several chronometric ratios yields an age 14.2 +/- ~= 3 Gyr.
We re-examine the extremely metal-poor (XMP) dwarf galaxy AGC 198691 using a high quality spectrum obtained by the LBTs MODS instrument. Previous spectral observations obtained from KOSMOS on the Mayall 4-m and the Blue Channel spectrograph on the MM
The s-enhanced and very metal-poor star CS 30322-023 shows a puzzling abundance pattern of the neutron-capture elements, i.e. several neutron-capture elements such as Ba, Pb etc. show enhancement, but other neutron-capture elements such as Sr, Eu etc
We present an elemental-abundance analysis of an extremely metal-poor (EMP; [Fe/H] < -3.0) star, SDSS J134338.67+484426.6, identified during the course of the MARVELS spectroscopic pre-survey of some 20000 stars to identify suitable candidates for ex
We discuss the origin of HE0107-5240 which is the most metal poor star yet observed ([Fe/H] = -5.3). Its discovery has an important bearing on the question of the observability of first generation stars. In common with other metal-poor stars (-4 < [F
We provide detailed abundance analyses of 8 candidate super-metal-rich stars. Five of them are confirmed to have [Fe/H] > 0.2 dex, the generally-accepted limit for super-metal-richness. Furthermore, we derive abundances of several elements and find t